Devising the technological principles for making a granulated filler obtained through ionotropic gelation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.200098

Keywords:

granulated fillers, sodium alginate, ionic calcium, alginate-calcium complex, ionotropic gelation

Abstract

This paper reports the development of technological principles for making granulated fillers. Our study involved model systems (granules), which has made it possible to determine the conditions for forming alginate-calcium complexes. It has been established that the basic principle for obtaining the granules is the ratio of mannuronic to guluronic residues in the composition of sodium alginate, which should equal χ=0.4...0.6 to implement the process of granulation. It has been proven that the content of G-blocks in the composition of sodium alginate should be within 20...25 %, which, at the content of ionic calcium within the range of 80 to 120 mg %, ensures the formation of stable alginate calcium complexes. It has been determined that the increase in the module of elasticity of the structured systems depends on the concentration of sodium alginate, the conditions for implementing its sorption properties relative to calcium ions, and the quantitative content of charged particles.

The reduction of the sorption capacity of sodium alginate has been proven under a condition of the lowered pH, as there occurs the exchange of ions of sodium for the ions of hydrogen, that is the formation of alginic acids (HAlg), which have a low ability to dissociation and ion exchange. It has been experimentally confirmed that the use of low pH raw materials in the technology of granulated fillers based on sodium alginate would not only reduce the module of elasticity of the granules but could also contribute to the loss of the system transparency.

The influence of sugar syrups, pH of the medium, as well as heat treatment, on the module of elasticity and a change in the weight of granulated fillers have been investigated. It has been determined that under the impact of the above factors there is an increase in the module of elasticity of granulated fillers and a decrease in their mass due to a partial release of moisture. Taking the specified technological principles into consideration, a model of the technological system for making granulated fillers has been devised. Specific features of the technological process have been defined under a condition for the use of dairy raw materials, alcohol-containing raw materials, as well as low pH raw materials

Author Biographies

Nataliya Grynchenko, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, Associate Professor

Department of Meat Processing Technologies

Olga Tishchenko, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, Associate Professor

Department of Technology of Bread, Confectionery, Pasta and Food Concentrates

Olga Grynchenko, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, Professor

Department of Food Technology in the Restaurant Industry

Pavlo Pyvovarov, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, Professor

Department of Food Technology in the Restaurant Industry

References

  1. Cropotov, J. (2015). Development and quality assessment of heat-stable fruit fillings containing dietary fibers. The Annals of the University Dunarea de Jos of Galati. Fascicle VI-Food Technology, 39 (2), 38–54.
  2. Cropotova, J., Popel, S. (2013). A way to prevent syneresis in fruit fillings prepared with gellan gum. Scientific Papers. Series D. Animal Science, LVI, 326–332.
  3. Królczyk, J., Dawidziuk, T., Janiszewska-Turak, E., Sołowiej, B. (2016). Use of Whey and Whey Preparations in the Food Industry – a Review. Polish Journal of Food and Nutrition Sciences, 66 (3), 157–165. doi: https://doi.org/10.1515/pjfns-2015-0052
  4. Mendoza Pariapaza, K. S. (2017). Muffins de chocolate con relleno de mermelada de kiwi enriquecida con Spirulina. Arequipa, 170.
  5. Shakerardekani, A., Karim, R., Ghazali, H., Chin, N. (2013). Textural, Rheological and Sensory Properties and Oxidative Stability of Nut Spreads – A Review. International Journal of Molecular Sciences, 14 (2), 4223–4241. doi: https://doi.org/10.3390/ijms14024223
  6. Talbot, G. (2015). Specialty oils and fats in confectionery. Specialty Oils and Fats in Food and Nutrition, 221–239. doi: https://doi.org/10.1016/b978-1-78242-376-8.00009-0
  7. Tkachenko, A., Pakhomova, I. (2016). Consumer properties improvement of sugar cookies with fillings with non-traditional raw materials with high biological value. Eastern-European Journal of Enterprise Technologies, 3 (11 (81)), 54–61. doi: https://doi.org/10.15587/1729-4061.2016.70950
  8. Caguioa, R. P., Nunez, J. M. A., Opena, M. G., Salaver, J. A. C. (2015). Innovative bomb-nanas coated with chocolate and toppings. Ani: Letran Calamba Research Report, 2 (1), 1–11.
  9. Gelroth, J., Ranhotra, G. S. (2001). Food Uses of Fiber. Handbook of Dietary Fiber, 435–451. doi: https://doi.org/10.1201/9780203904220-27
  10. Ramírez, M. J., Giraldo, G. I., Orrego, C. E. (2015). Modeling and stability of polyphenol in spray-dried and freeze-dried fruit encapsulates. Powder Technology, 277, 89–96. doi: https://doi.org/10.1016/j.powtec.2015.02.060
  11. Sharifian, F., Modarres-Motlagh, A., Komarizade, M. H., Nikbakht, A. M. (2013). Colour Change Analysis of Fig Fruit during Microwave Drying. International Journal of Food Engineering, 9 (1), 107–114. doi: https://doi.org/10.1515/ijfe-2012-0211
  12. Voda, A., Homan, N., Witek, M., Duijster, A., van Dalen, G., van der Sman, R. et. al. (2012). The impact of freeze-drying on microstructure and rehydration properties of carrot. Food Research International, 49 (2), 687–693. doi: https://doi.org/10.1016/j.foodres.2012.08.019
  13. Hrynchenko, O., Neklesa, O., Mironov, O. (2015). Udoskonalennia tekhnolohiyi nachynok dlia boroshnianykh kondyterskykh ta kulinarnykh vyrobiv. Prodovolcha industriya APK, 1-2, 19–25.
  14. Krapivnitskaya, I. A. (2009). Osobennosti primeneniya pektinov i pektinsoderzhashchih produktov pri proizvodstve konditerskih izdeliy. Produkty & ingredienty, 11 (64), 38–40.
  15. Razak, R. A., Karim, R., Sulaiman, R., Hussain, N. (2018). Effects of different types and concentration of hydrocolloids on mango filling. International Food Research Journal, 25 (3), 1109–1119.
  16. Miquelim, J. N., Alcântara, M. R., Lannes, S. C. da S. (2011). Stability of fruit bases and chocolate fillings. Ciência e Tecnologia de Alimentos, 31 (1), 270–276. doi: https://doi.org/10.1590/s0101-20612011000100041
  17. Pertzevoy, F., Bidyuk, D., Koshel, O. (2018). Analytical substantiation and choice of binary combination of polysaccharides for thermostenic milk-containing stuffing. Prohresyvni tekhnika ta tekhnolohiyi kharchovykh vyrobnytstv restorannoho hospodarstva i torhivli, 1 (27), 122–133.
  18. Yovbak, U. S., Petrenko, V. V., Biela, N. I. (2014). Tekhnolohichni parametry vyrobnytstva harbuzovoi termostabilnoi nachynky. Naukovi pratsi ONAKhT, 1(46), 181–183.
  19. Moroz, O. V., Pyvovarov, Ye. P., Troshchiy, T. V. (2011). Vyznachennia zakonomirnostei formuvannia zmishanykh drahliv na osnovi system «alhinat natriyu ‒ karahinan». Kharchova nauka i tekhnolohiya, 4 (17), 58–59.
  20. Moroz, O., Pyvovarov, Y., Neklesa, O., Pyvovarov, P., Plotnikova, R. (2013). Study of interaction ionotropic and thermotropic polysaccharides in gelly product. Eastern-European Journal of Enterprise Technologies, 6 (11 (66)), 24–27. Available at: http://journals.uran.ua/eejet/article/view/19129/17017
  21. Neklesa, O. P., Pyvovarov, Ye. P., Nahornyi, O. Yu.; Nahornyi, O. Yu. (Ed.) (2015). Tekhnolohiya sousiv tomatnykh kapsulovanykh. Kharkiv: KhDUKhT, 120.
  22. Plotnikova, R. V., Hrynchenko, N. H., Pyvovarov, P. P., Hrynchenko, O.O. (2015). Naukovi ta praktychni osnovy vyrobnytstva desertnoi produktsiyi na osnovi molochnoi ta plodovo-yahidnoi syrovyny. Kharkiv: KhDUKhT, 111.
  23. Plotnikova, R. V., Hrynchenko, N. H., Moroz, O. V., Pyvovarov, Y. P. (2013). Pat. No. 102341 UA. Granulated product and method for producing thereof. No. a201207329; declareted: 15.06.2012; published: 25.06.2013, Bul. No. 12.
  24. Grynchenko, N., Tishchenko, O., Grynchenko, O., Pyvovarov, P. (2020). Investigation of safety and quality parameters of granulated fillers. EUREKA: Life Sciences, 2, 29–38. doi: http://dx.doi.org/10.21303/2504-5695.2020.001208
  25. Soares, J. P., Santos, J. E., Chierice, G. O., Cavalheiro, E. T. G. (2004). Thermal behavior of alginic acid and its sodium salt. Eclética Química, 29 (2), 57–64. doi: https://doi.org/10.1590/s0100-46702004000200009
  26. Sellimi, S., Younes, I., Ayed, H. B., Maalej, H., Montero, V., Rinaudo, M. et. al. (2015). Structural, physicochemical and antioxidant properties of sodium alginate isolated from a Tunisian brown seaweed. International Journal of Biological Macromolecules, 72, 1358–1367. doi: https://doi.org/10.1016/j.ijbiomac.2014.10.016
  27. Draget, K. I., Taylor, C. (2011). Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocolloids, 25 (2), 251–256. doi: https://doi.org/10.1016/j.foodhyd.2009.10.007

Downloads

Published

2020-04-30

How to Cite

Grynchenko, N., Tishchenko, O., Grynchenko, O., & Pyvovarov, P. (2020). Devising the technological principles for making a granulated filler obtained through ionotropic gelation. Eastern-European Journal of Enterprise Technologies, 2(11 (104), 13–23. https://doi.org/10.15587/1729-4061.2020.200098

Issue

Section

Technology and Equipment of Food Production