Determination of regularities of the influence of the elemental composition of niobiumbased alloys on their structure and properties
DOI:
https://doi.org/10.15587/1729-4061.2020.200264Keywords:
multi-element alloy, niobium, high-entropy alloy, distortion, phase composition, coefficient of thermal expansionAbstract
The method of x-ray diffractometry was used to study the effect of the composition of two, three, four and five elemental niobium-based alloys on their phase-structural state, average crystallite size, and thermal expansion coefficient in the temperature range of +20 °С...–170 °С. As elements of filling, vanadium, tantalum, hafnium, molybdenum, zirconium, tungsten and titanium were used. These elements either in equilibrium – at room temperature (RT=+20 °С), or in high-temperature states have a bcc crystal lattice similar to Nb.
It is found that in alloys based on two, three, four and five elements, for the compositions used in the work, the formation of a single-phase state with a bcc crystal lattice of a solid solution occurs. At the structural level, the alloy composition affects the ratio of the intensity of the diffraction peak from different planes. For two diffraction orders from the most closely packed {110} plane in the bcc lattice, a change in the intensity value for the second diffraction order is revealed. The greatest decrease in relative intensity occurs in binary alloys with a large discrepancy in the size of the atomic radii of the components. In multi-element alloys, a smaller drop in intensity is observed. This may be associated with a reduction in the distortion of the crystal lattice due to the ordering of the elements that make up the alloys.
At the substructural level, the alloy composition affects the average crystallite size. For binary alloy compositions, the greatest effect is associated with Zr and Hf filling elements having a significantly larger atomic radius. This leads to a decrease in the average crystallite size of the alloy solid solution to the smallest value of 11 nm (NbZr alloy) and the release of the second phase (NbHf alloy).
It is found that the coefficient of linear thermal expansion determined by the X-ray diffraction method at 2 temperatures (RT=+20 °С and Т=–170 °С) in multi-element alloys exceeds the values for the starting elements. The largest increase in CTE is observed in alloys containing 17–26 at. % V and W, which have the smallest atomic radiusReferences
- Mayrhofer, P. H., Mitterer, C., Hultman, L., Clemens, H. (2006). Microstructural design of hard coatings. Progress in Materials Science, 51 (8), 1032–1114. doi: https://doi.org/10.1016/j.pmatsci.2006.02.002
- Sobol, O. V., Postelnyk, A. A., Meylekhov, A. A., Andreev, A. A., Stolbovoy, V. A. (2017). Structural Engineering of the Multilayer Vacuum Arc Nitride Coatings Based on Ti, Cr, Mo and Zr. Journal of Nano- and Electronic Physics, 9 (3), 03003-1–03003-6. doi: https://doi.org/10.21272/jnep.9(3).03003
- Azarenkov, N. A., Sobol’, O. V., Beresnev, V. M., Pogrebnyak, A. D., Kolesnikov, D. A., Turbin, P. V., Toryanik, I. N. (2013). Vacuum-plasma coatings based on the multielement nitrides. Metallofizika i noveishie tekhnologii, 35 (8), 1061–1084. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/104178/07-Azarenkov.pdf?sequence=1
- Cherepova, T., Dmitrieva, G., Tisov, O., Dukhota, O., Kindrachuk, M. (2019). Research on the Properties of Co-Tic and Ni-Tic Hip-Sintered Alloys. Acta Mechanica et Automatica, 13 (1), 57–67. doi: https://doi.org/10.2478/ama-2019-0009
- Sobol’, O. V., Andreev, A. A., Stolbovoi, V. A., Fil’chikov, V. E. (2012). Structural-phase and stressed state of vacuum-arc-deposited nanostructural Mo-N coatings controlled by substrate bias during deposition. Technical Physics Letters, 38 (2), 168–171. doi: https://doi.org/10.1134/s1063785012020307
- Sobol’, O. V., Andreev, A. A., Gorban’, V. F., Krapivka, N. A., Stolbovoi, V. A., Serdyuk, I. V., Fil’chikov, V. E. (2012). Reproducibility of the single-phase structural state of the multielement high-entropy Ti-V-Zr-Nb-Hf system and related superhard nitrides formed by the vacuum-arc method. Technical Physics Letters, 38 (7), 616–619. doi: https://doi.org/10.1134/s1063785012070127
- Sobol’, O. V., Andreev, A. A., Gorban’, V. F., Meylekhov, A. A., Postelnyk, Н. О. (2016). Structural Engineering of the Vacuum Arc ZrN/CrN Multilayer Coatings. Journal of Nano- and Electronic Physics, 8 (1), 01042-1–01042-5. doi: https://doi.org/10.21272/jnep.8(1).01042
- Sobol’, O. V., Andreev, A. A., Gorban’, V. F., Stolbovoy, V. A., Melekhov, A. A., Postelnyk, A. A. (2016). Possibilities of structural engineering in multilayer vacuum-arc ZrN/CrN coatings by varying the nanolayer thickness and application of a bias potential. Technical Physics, 61 (7), 1060–1063. doi: https://doi.org/10.1134/s1063784216070252
- Sobol’, O. V., Meilekhov, A. A. (2018). Conditions of Attaining a Superhard State at a Critical Thickness of Nanolayers in Multiperiodic Vacuum-Arc Plasma Deposited Nitride Coatings. Technical Physics Letters, 44 (1), 63–66. doi: https://doi.org/10.1134/s1063785018010224
- Sobol’, O. V., Andreev, A. A., Gorban’, V. F. (2016). Structural Engineering of Vacuum-ARC Multiperiod Coatings. Metal Science and Heat Treatment, 58 (1-2), 37–39. doi: https://doi.org/10.1007/s11041-016-9961-3
- Raghavan, R., Hari Kumar, K. C., Murty, B. S. (2012). Analysis of phase formation in multi-component alloys. Journal of Alloys and Compounds, 544, 152–158. doi: https://doi.org/10.1016/j.jallcom.2012.07.105
- Senkov, O. N., Wilks, G. B., Scott, J. M., Miracle, D. B. (2011). Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 19 (5), 698–706. doi: https://doi.org/10.1016/j.intermet.2011.01.004
- Ranganathan, S. (2003). Alloyed pleasures: multimetallic cocktails. Current science, 85 (10), 1404–1406. Available at: https://pdfs.semanticscholar.org/e4d2/1223b04a774d2ac1b134bb46cfc0ba810f43.pdf
- Li, C., Li, J. C., Zhao, M., Jiang, Q. (2009). Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. Journal of Alloys and Compounds, 475 (1-2), 752–757. doi: https://doi.org/10.1016/j.jallcom.2008.07.124
- Sobol’, O. V., Yakushchenko, I. V. (2015). Influence of ion implantation on the structural and stressed state and mechanical properties of nitrides of high-entropy (TiZrAlYNb)N and (TiZrHfVNbTa)N alloys. Journal of nano- and electronic physics, 7 (3), 03044-1-03044-6. Available at: http://jnep.sumdu.edu.ua/download/numbers/2015/3/articles/jnep_2015_V7_03044.pdf
- Yeh, J.-W., Chen, S.-K., Lin, S.-J., Gan, J.-Y., Chin, T.-S., Shun, T.-T. et. al. (2004). Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6 (5), 299–303. doi: https://doi.org/10.1002/adem.200300567
- Sobol’, O. V., Andreev, A. A., Gorban', V. F., Postelnyk, Н. О., Stolbovoy, V. A., Zvyagolsky, A. V. et. al. (2019). The use of negative bias potential for structural engineering of vacuum-arc nitride coatings based on high-entropy alloys. Problems of atomic science and technology, 120 (2), 127–135. Available at: https://vant.kipt.kharkov.ua/ARTICLE/VANT_2019_2/article_2019_2_127.pdf
- Guo, S., Liu, C. T. (2011). Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International, 21 (6), 433–446. doi: https://doi.org/10.1016/s1002-0071(12)60080-x
- Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L., Liaw, P. K. (2008). Solid-Solution Phase Formation Rules for Multi-component Alloys. Advanced Engineering Materials, 10 (6), 534–538. doi: https://doi.org/10.1002/adem.200700240
- Pickering, E. J., Jones, N. G. (2016). High-entropy alloys: a critical assessment of their founding principles and future prospects. International Materials Reviews, 61 (3), 183–202. doi: https://doi.org/10.1080/09506608.2016.1180020
- Cantor, B., Chang, I. T. H., Knight, P., Vincent, A. J. B. (2004). Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 375-377, 213–218. doi: https://doi.org/10.1016/j.msea.2003.10.257
- Chen, J., Zhou, X., Wang, W., Liu, B., Lv, Y., Yang, W. et. al. (2018). A review on fundamental of high entropy alloys with promising high–temperature properties. Journal of Alloys and Compounds, 760, 15–30. doi: https://doi.org/10.1016/j.jallcom.2018.05.067
- Cheng, C.-Y., Yang, Y.-C., Zhong, Y.-Z., Chen, Y.-Y., Hsu, T., Yeh, J.-W. (2017). Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys. Current Opinion in Solid State and Materials Science, 21 (6), 299–311. doi: https://doi.org/10.1016/j.cossms.2017.09.002
- Miracle, D. B., Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448–511. doi: https://doi.org/10.1016/j.actamat.2016.08.081
- Zhang, Y., Yang, X., Liaw, P. K. (2012). Alloy Design and Properties Optimization of High-Entropy Alloys. JOM, 64 (7), 830–838. doi: https://doi.org/10.1007/s11837-012-0366-5
- Florea, I., Florea, R. M., Baltatescu, O., Soare, V., Chelariu, R., Carcea, I. (2013). High entropy alloys. Journal of Optoelectronics and Advanced Materials, 15 (7-8), 761–767. Available at: https://www.researchgate.net/publication/274640494_High_entropy_alloys
- Tang, W.-Y., Yeh, J.-W. (2009). Effect of Aluminum Content on Plasma-Nitrided Al x CoCrCuFeNi High-Entropy Alloys. Metallurgical and Materials Transactions A, 40 (6), 1479–1486. doi: https://doi.org/10.1007/s11661-009-9821-5
- Chen, M.-R., Lin, S.-J., Yeh, J.-W., Chen, S.-K., Huang, Y.-S., Tu, C.-P. (2006). Microstructure and Properties of Al0.5CoCrCuFeNiTix (x=0–2.0) High-Entropy Alloys. Materials Transactions, 47 (5), 1395–1401. doi: https://doi.org/10.2320/matertrans.47.1395
- Wu, J.-M., Lin, S.-J., Yeh, J.-W., Chen, S.-K., Huang, Y.-S., Chen, H.-C. (2006). Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 261 (5-6), 513–519. doi: https://doi.org/10.1016/j.wear.2005.12.008
- Chen, Y. Y., Hong, U. T., Shih, H. C., Yeh, J. W., Duval, T. (2005). Electrochemical kinetics of the high entropy alloys in aqueous environments – a comparison with type 304 stainless steel. Corrosion Science, 47 (11), 2679–2699. doi: https://doi.org/10.1016/j.corsci.2004.09.026
- Chen, Y. Y., Duval, T., Hung, U. D., Yeh, J. W., Shih, H. C. (2005). Microstructure and electrochemical properties of high entropy alloys – a comparison with type-304 stainless steel. Corrosion Science, 47 (9), 2257–2279. doi: https://doi.org/10.1016/j.corsci.2004.11.008
- Wang, Z., Fang, Q., Li, J., Liu, B., Liu, Y. (2018). Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys. Journal of Materials Science & Technology, 34 (2), 349–354. doi: https://doi.org/10.1016/j.jmst.2017.07.013
- Tong, C.-J., Chen, Y.-L., Yeh, J.-W., Lin, S.-J., Chen, S.-K., Shun, T.-T. et. al. (2005). Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 36 (4), 881–893. doi: https://doi.org/10.1007/s11661-005-0283-0
- Andreev, A. A., Voyevodin, V. N., Sobol', O. V., Gorban', V. F., Kartmazov, G. N., Stolbovoy, V. A. et. al. (2013). Regularities in the effect of model ion irradiation on the structure and properties of vacuum-arc nitride coatings. Problems of atomic science and technology, 5 (87), 142–146. Available at: https://vant.kipt.kharkov.ua/ARTICLE/VANT_2013_5/article_2013_5_142.pdf
- Sobol', O. V., Dur, O., Postelnyk, A. A., Kraievska, Z. V. (2019). Structural engineering and functional properties of vacuum-arc coatings of high-entropy (TiZrNbVHf)N and (TiZrNbVHfTa)N alloys nitrides. Functional materials, 26 (2), 310–318. doi: https://doi.org/10.15407/fm26.02.310
- Yeh, J.-W. (2013). Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM, 65 (12), 1759–1771. doi: https://doi.org/10.1007/s11837-013-0761-6
- Stepanov, N. D., Shaysultanov, D. G., Ozerov, M. S., Zherebtsov, S. V., Salishchev, G. A. (2016). Second phase formation in the CoCrFeNiMn high entropy alloy after recrystallization annealing. Materials Letters, 185, 1–4. doi: https://doi.org/10.1016/j.matlet.2016.08.088
- Stepanov, N. D., Yurchenko, N. Y., Zherebtsov, S. V., Tikhonovsky, M. A., Salishchev, G. A. (2018). Aging behavior of the HfNbTaTiZr high entropy alloy. Materials Letters, 211, 87–90. doi: https://doi.org/10.1016/j.matlet.2017.09.094
- Firstov, S. A., Gorban', V. F., Krapivka, N. A., Pechkovskiy, E. P. (2012). Raspredelenie elementov v lityh mnogokomponentnyh vysokoentropiynyh odnofaznyh splavah s OTSK kristallicheskoy reshetkoy. Kompozity i nanomaterialy, 3, 48–65.
- Sobol’, O. V., Shovkoplyas, O. A. (2013). On advantages of X-ray schemes with orthogonal diffraction vectors for studying the structural state of ion-plasma coatings. Technical Physics Letters, 39 (6), 536–539. doi: https://doi.org/10.1134/s1063785013060126
- Jenkins, R., Snyder, R. L. (1996). Introduction to X-ray Powder Diffractometry. John Wiley & Sons Inc. doi: https://doi.org/10.1002/9781118520994
- Mikhailov, I. F., Baturin, A. A., Mikhailov, A. I., Borisova, S. S. (2012). Increasing the sensitivity of X-ray fluorescent scheme with secondary radiator using the initial spectrum filtration. Functional materials, 19 (1), 126–129. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/135279/21-Mikhailov.pdf?sequence=1
- Heyrovska, R. (2013). Atomic, ionic and bohr radii linked via the golden ratio for elements of groups 1 - 8 including lanthanides and actinides. International journal of sciences, 2, 63–68. Available at: https://www.ijsciences.com/pub/pdf/V2-201304-18.pdf
- Finkel', V. A. (1971). Nizkotemperaturnaya rentgenografiya metallov. Moscow: Metallurgiya, 256.
- Chirkin, V. S. (1967). Teplofizicheskie svoystva materialov yadernoy tehniki. Moscow: Atomizdat, 474.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Oleg Sоbоl`, Andrii Meilekhov, Valeria Subbotinа, Olena Rebrova
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.