Determination of regularities of the influence of the elemental composition of niobium­based alloys on their structure and properties

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.200264

Keywords:

multi-element alloy, niobium, high-entropy alloy, distortion, phase composition, coefficient of thermal expansion

Abstract

The method of x-ray diffractometry was used to study the effect of the composition of two, three, four and five elemental niobium-based alloys on their phase-structural state, average crystallite size, and thermal expansion coefficient in the temperature range of +20 °С...–170 °С. As elements of filling, vanadium, tantalum, hafnium, molybdenum, zirconium, tungsten and titanium were used. These elements either in equilibrium – at room temperature (RT=+20 °С), or in high-temperature states have a bcc crystal lattice similar to Nb.

It is found that in alloys based on two, three, four and five elements, for the compositions used in the work, the formation of a single-phase state with a bcc crystal lattice of a solid solution occurs. At the structural level, the alloy composition affects the ratio of the intensity of the diffraction peak from different planes. For two diffraction orders from the most closely packed {110} plane in the bcc lattice, a change in the intensity value for the second diffraction order is revealed. The greatest decrease in relative intensity occurs in binary alloys with a large discrepancy in the size of the atomic radii of the components. In multi-element alloys, a smaller drop in intensity is observed. This may be associated with a reduction in the distortion of the crystal lattice due to the ordering of the elements that make up the alloys.

At the substructural level, the alloy composition affects the average crystallite size. For binary alloy compositions, the greatest effect is associated with Zr and Hf filling elements having a significantly larger atomic radius. This leads to a decrease in the average crystallite size of the alloy solid solution to the smallest value of 11 nm (NbZr alloy) and the release of the second phase (NbHf alloy).

It is found that the coefficient of linear thermal expansion determined by the X-ray diffraction method at 2 temperatures (RT=+20 °С and Т=–170 °С) in multi-element alloys exceeds the values for the starting elements. The largest increase in CTE is observed in alloys containing 17–26 at. % V and W, which have the smallest atomic radius

Author Biographies

Oleg Sоbоl`, National Technical University "Kharkiv Polytechnic Institute" Kirpichova str., 2, Kharkiv, Ukraine, 61002

Doctor of Physical and Mathematical Sciences, Professor

Department of Materials Science

Andrii Meilekhov, National Technical University "Kharkiv Polytechnic Institute" Kirpichova str., 2, Kharkiv, Ukraine, 61002

Junior Researcher

Department of Materials Science

Valeria Subbotinа, National Technical University "Kharkiv Polytechnic Institute" Kirpichova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Materials Science

Olena Rebrova, National Technical University "Kharkiv Polytechnic Institute" Kirpichova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Materials Science

References

  1. Mayrhofer, P. H., Mitterer, C., Hultman, L., Clemens, H. (2006). Microstructural design of hard coatings. Progress in Materials Science, 51 (8), 1032–1114. doi: https://doi.org/10.1016/j.pmatsci.2006.02.002
  2. Sobol, O. V., Postelnyk, A. A., Meylekhov, A. A., Andreev, A. A., Stolbovoy, V. A. (2017). Structural Engineering of the Multilayer Vacuum Arc Nitride Coatings Based on Ti, Cr, Mo and Zr. Journal of Nano- and Electronic Physics, 9 (3), 03003-1–03003-6. doi: https://doi.org/10.21272/jnep.9(3).03003
  3. Azarenkov, N. A., Sobol’, O. V., Beresnev, V. M., Pogrebnyak, A. D., Kolesnikov, D. A., Turbin, P. V., Toryanik, I. N. (2013). Vacuum-plasma coatings based on the multielement nitrides. Metallofizika i noveishie tekhnologii, 35 (8), 1061–1084. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/104178/07-Azarenkov.pdf?sequence=1
  4. Cherepova, T., Dmitrieva, G., Tisov, O., Dukhota, O., Kindrachuk, M. (2019). Research on the Properties of Co-Tic and Ni-Tic Hip-Sintered Alloys. Acta Mechanica et Automatica, 13 (1), 57–67. doi: https://doi.org/10.2478/ama-2019-0009
  5. Sobol’, O. V., Andreev, A. A., Stolbovoi, V. A., Fil’chikov, V. E. (2012). Structural-phase and stressed state of vacuum-arc-deposited nanostructural Mo-N coatings controlled by substrate bias during deposition. Technical Physics Letters, 38 (2), 168–171. doi: https://doi.org/10.1134/s1063785012020307
  6. Sobol’, O. V., Andreev, A. A., Gorban’, V. F., Krapivka, N. A., Stolbovoi, V. A., Serdyuk, I. V., Fil’chikov, V. E. (2012). Reproducibility of the single-phase structural state of the multielement high-entropy Ti-V-Zr-Nb-Hf system and related superhard nitrides formed by the vacuum-arc method. Technical Physics Letters, 38 (7), 616–619. doi: https://doi.org/10.1134/s1063785012070127
  7. Sobol’, O. V., Andreev, A. A., Gorban’, V. F., Meylekhov, A. A., Postelnyk, Н. О. (2016). Structural Engineering of the Vacuum Arc ZrN/CrN Multilayer Coatings. Journal of Nano- and Electronic Physics, 8 (1), 01042-1–01042-5. doi: https://doi.org/10.21272/jnep.8(1).01042
  8. Sobol’, O. V., Andreev, A. A., Gorban’, V. F., Stolbovoy, V. A., Melekhov, A. A., Postelnyk, A. A. (2016). Possibilities of structural engineering in multilayer vacuum-arc ZrN/CrN coatings by varying the nanolayer thickness and application of a bias potential. Technical Physics, 61 (7), 1060–1063. doi: https://doi.org/10.1134/s1063784216070252
  9. Sobol’, O. V., Meilekhov, A. A. (2018). Conditions of Attaining a Superhard State at a Critical Thickness of Nanolayers in Multiperiodic Vacuum-Arc Plasma Deposited Nitride Coatings. Technical Physics Letters, 44 (1), 63–66. doi: https://doi.org/10.1134/s1063785018010224
  10. Sobol’, O. V., Andreev, A. A., Gorban’, V. F. (2016). Structural Engineering of Vacuum-ARC Multiperiod Coatings. Metal Science and Heat Treatment, 58 (1-2), 37–39. doi: https://doi.org/10.1007/s11041-016-9961-3
  11. Raghavan, R., Hari Kumar, K. C., Murty, B. S. (2012). Analysis of phase formation in multi-component alloys. Journal of Alloys and Compounds, 544, 152–158. doi: https://doi.org/10.1016/j.jallcom.2012.07.105
  12. Senkov, O. N., Wilks, G. B., Scott, J. M., Miracle, D. B. (2011). Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 19 (5), 698–706. doi: https://doi.org/10.1016/j.intermet.2011.01.004
  13. Ranganathan, S. (2003). Alloyed pleasures: multimetallic cocktails. Current science, 85 (10), 1404–1406. Available at: https://pdfs.semanticscholar.org/e4d2/1223b04a774d2ac1b134bb46cfc0ba810f43.pdf
  14. Li, C., Li, J. C., Zhao, M., Jiang, Q. (2009). Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. Journal of Alloys and Compounds, 475 (1-2), 752–757. doi: https://doi.org/10.1016/j.jallcom.2008.07.124
  15. Sobol’, O. V., Yakushchenko, I. V. (2015). Influence of ion implantation on the structural and stressed state and mechanical properties of nitrides of high-entropy (TiZrAlYNb)N and (TiZrHfVNbTa)N alloys. Journal of nano- and electronic physics, 7 (3), 03044-1-03044-6. Available at: http://jnep.sumdu.edu.ua/download/numbers/2015/3/articles/jnep_2015_V7_03044.pdf
  16. Yeh, J.-W., Chen, S.-K., Lin, S.-J., Gan, J.-Y., Chin, T.-S., Shun, T.-T. et. al. (2004). Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6 (5), 299–303. doi: https://doi.org/10.1002/adem.200300567
  17. Sobol’, O. V., Andreev, A. A., Gorban', V. F., Postelnyk, Н. О., Stolbovoy, V. A., Zvyagolsky, A. V. et. al. (2019). The use of negative bias potential for structural engineering of vacuum-arc nitride coatings based on high-entropy alloys. Problems of atomic science and technology, 120 (2), 127–135. Available at: https://vant.kipt.kharkov.ua/ARTICLE/VANT_2019_2/article_2019_2_127.pdf
  18. Guo, S., Liu, C. T. (2011). Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International, 21 (6), 433–446. doi: https://doi.org/10.1016/s1002-0071(12)60080-x
  19. Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L., Liaw, P. K. (2008). Solid-Solution Phase Formation Rules for Multi-component Alloys. Advanced Engineering Materials, 10 (6), 534–538. doi: https://doi.org/10.1002/adem.200700240
  20. Pickering, E. J., Jones, N. G. (2016). High-entropy alloys: a critical assessment of their founding principles and future prospects. International Materials Reviews, 61 (3), 183–202. doi: https://doi.org/10.1080/09506608.2016.1180020
  21. Cantor, B., Chang, I. T. H., Knight, P., Vincent, A. J. B. (2004). Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 375-377, 213–218. doi: https://doi.org/10.1016/j.msea.2003.10.257
  22. Chen, J., Zhou, X., Wang, W., Liu, B., Lv, Y., Yang, W. et. al. (2018). A review on fundamental of high entropy alloys with promising high–temperature properties. Journal of Alloys and Compounds, 760, 15–30. doi: https://doi.org/10.1016/j.jallcom.2018.05.067
  23. Cheng, C.-Y., Yang, Y.-C., Zhong, Y.-Z., Chen, Y.-Y., Hsu, T., Yeh, J.-W. (2017). Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys. Current Opinion in Solid State and Materials Science, 21 (6), 299–311. doi: https://doi.org/10.1016/j.cossms.2017.09.002
  24. Miracle, D. B., Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448–511. doi: https://doi.org/10.1016/j.actamat.2016.08.081
  25. Zhang, Y., Yang, X., Liaw, P. K. (2012). Alloy Design and Properties Optimization of High-Entropy Alloys. JOM, 64 (7), 830–838. doi: https://doi.org/10.1007/s11837-012-0366-5
  26. Florea, I., Florea, R. M., Baltatescu, O., Soare, V., Chelariu, R., Carcea, I. (2013). High entropy alloys. Journal of Optoelectronics and Advanced Materials, 15 (7-8), 761–767. Available at: https://www.researchgate.net/publication/274640494_High_entropy_alloys
  27. Tang, W.-Y., Yeh, J.-W. (2009). Effect of Aluminum Content on Plasma-Nitrided Al x CoCrCuFeNi High-Entropy Alloys. Metallurgical and Materials Transactions A, 40 (6), 1479–1486. doi: https://doi.org/10.1007/s11661-009-9821-5
  28. Chen, M.-R., Lin, S.-J., Yeh, J.-W., Chen, S.-K., Huang, Y.-S., Tu, C.-P. (2006). Microstructure and Properties of Al0.5CoCrCuFeNiTix (x=0–2.0) High-Entropy Alloys. Materials Transactions, 47 (5), 1395–1401. doi: https://doi.org/10.2320/matertrans.47.1395
  29. Wu, J.-M., Lin, S.-J., Yeh, J.-W., Chen, S.-K., Huang, Y.-S., Chen, H.-C. (2006). Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 261 (5-6), 513–519. doi: https://doi.org/10.1016/j.wear.2005.12.008
  30. Chen, Y. Y., Hong, U. T., Shih, H. C., Yeh, J. W., Duval, T. (2005). Electrochemical kinetics of the high entropy alloys in aqueous environments – a comparison with type 304 stainless steel. Corrosion Science, 47 (11), 2679–2699. doi: https://doi.org/10.1016/j.corsci.2004.09.026
  31. Chen, Y. Y., Duval, T., Hung, U. D., Yeh, J. W., Shih, H. C. (2005). Microstructure and electrochemical properties of high entropy alloys – a comparison with type-304 stainless steel. Corrosion Science, 47 (9), 2257–2279. doi: https://doi.org/10.1016/j.corsci.2004.11.008
  32. Wang, Z., Fang, Q., Li, J., Liu, B., Liu, Y. (2018). Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys. Journal of Materials Science & Technology, 34 (2), 349–354. doi: https://doi.org/10.1016/j.jmst.2017.07.013
  33. Tong, C.-J., Chen, Y.-L., Yeh, J.-W., Lin, S.-J., Chen, S.-K., Shun, T.-T. et. al. (2005). Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 36 (4), 881–893. doi: https://doi.org/10.1007/s11661-005-0283-0
  34. Andreev, A. A., Voyevodin, V. N., Sobol', O. V., Gorban', V. F., Kartmazov, G. N., Stolbovoy, V. A. et. al. (2013). Regularities in the effect of model ion irradiation on the structure and properties of vacuum-arc nitride coatings. Problems of atomic science and technology, 5 (87), 142–146. Available at: https://vant.kipt.kharkov.ua/ARTICLE/VANT_2013_5/article_2013_5_142.pdf
  35. Sobol', O. V., Dur, O., Postelnyk, A. A., Kraievska, Z. V. (2019). Structural engineering and functional properties of vacuum-arc coatings of high-entropy (TiZrNbVHf)N and (TiZrNbVHfTa)N alloys nitrides. Functional materials, 26 (2), 310–318. doi: https://doi.org/10.15407/fm26.02.310
  36. Yeh, J.-W. (2013). Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM, 65 (12), 1759–1771. doi: https://doi.org/10.1007/s11837-013-0761-6
  37. Stepanov, N. D., Shaysultanov, D. G., Ozerov, M. S., Zherebtsov, S. V., Salishchev, G. A. (2016). Second phase formation in the CoCrFeNiMn high entropy alloy after recrystallization annealing. Materials Letters, 185, 1–4. doi: https://doi.org/10.1016/j.matlet.2016.08.088
  38. Stepanov, N. D., Yurchenko, N. Y., Zherebtsov, S. V., Tikhonovsky, M. A., Salishchev, G. A. (2018). Aging behavior of the HfNbTaTiZr high entropy alloy. Materials Letters, 211, 87–90. doi: https://doi.org/10.1016/j.matlet.2017.09.094
  39. Firstov, S. A., Gorban', V. F., Krapivka, N. A., Pechkovskiy, E. P. (2012). Raspredelenie elementov v lityh mnogokomponentnyh vysokoentropiynyh odnofaznyh splavah s OTSK kristallicheskoy reshetkoy. Kompozity i nanomaterialy, 3, 48–65.
  40. Sobol’, O. V., Shovkoplyas, O. A. (2013). On advantages of X-ray schemes with orthogonal diffraction vectors for studying the structural state of ion-plasma coatings. Technical Physics Letters, 39 (6), 536–539. doi: https://doi.org/10.1134/s1063785013060126
  41. Jenkins, R., Snyder, R. L. (1996). Introduction to X-ray Powder Diffractometry. John Wiley & Sons Inc. doi: https://doi.org/10.1002/9781118520994
  42. Mikhailov, I. F., Baturin, A. A., Mikhailov, A. I., Borisova, S. S. (2012). Increasing the sensitivity of X-ray fluorescent scheme with secondary radiator using the initial spectrum filtration. Functional materials, 19 (1), 126–129. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/135279/21-Mikhailov.pdf?sequence=1
  43. Heyrovska, R. (2013). Atomic, ionic and bohr radii linked via the golden ratio for elements of groups 1 - 8 including lanthanides and actinides. International journal of sciences, 2, 63–68. Available at: https://www.ijsciences.com/pub/pdf/V2-201304-18.pdf
  44. Finkel', V. A. (1971). Nizkotemperaturnaya rentgenografiya metallov. Moscow: Metallurgiya, 256.
  45. Chirkin, V. S. (1967). Teplofizicheskie svoystva materialov yadernoy tehniki. Moscow: Atomizdat, 474.

Downloads

Published

2020-04-30

How to Cite

Sоbоl` O., Meilekhov, A., Subbotinа V., & Rebrova, O. (2020). Determination of regularities of the influence of the elemental composition of niobium­based alloys on their structure and properties. Eastern-European Journal of Enterprise Technologies, 2(12 (104), 16–23. https://doi.org/10.15587/1729-4061.2020.200264

Issue

Section

Materials Science