Determination of the rational number of blades of the centrifugal wheel of a submersible pump
DOI:
https://doi.org/10.15587/1729-4061.2020.200998Keywords:
submersible pump, centrifugal wheel, computer-aided design systems, amplitude-frequency response.Abstract
The CAD/CAE/CAM method of end-to-end design of the impeller of a seven-stage submersible pump ODDESSEzentralasien –UPP 13-7/6 used for pumping sulfuric acid in hydrometallurgy is presented.
The studies are conducted in order to increase the efficiency of the pump manufactured at the KARLSKRONA LC AB LLP plant (Kazakhstan). Computer calculations of the centrifugal wheel with 8 and 9 blades for strength were carried out in the NASTRAN top-level CAE system. The influence of the number of centrifugal wheel blades on the level of stresses arising in the sections of the blades of the cover and main centrifugal wheel discs is determined. The maximum stress in the sections of the wheel with 8 blades reached 319 MPa and the wheel with 9 blades 199 MPa. The influence of the number of blades on the dynamic characteristics of the rotor shaft is examined. To do this, design mechanical and computer schemes of dynamic calculation are simulated to determine the amplitude-frequency characteristics of the rotor shaft. The harmonics amplitudes at frequencies caused by liquid pulsation at the blade frequency of 400 Hz and 450 Hz reached 110-4 m and 810-4 m, respectively. Based on the results of computer modeling of static and dynamic problems, a model of the impeller of a centrifugal multistage pump with a rational number of 8 double curvature blades is developed. The choice of the number of blades meets the criterion of wheel strength and the dynamic criterion of the shaft-wheel system.
For the production of the prototype wheel, an analysis of the process parameters of 3D printing in terms of surface roughness of finished products is carried out. Based on the analysis, stereolithography the technology is chosen and centrifugal wheels are printed for further bench hydrodynamic tests in a plant. The studies based on CAD/CAE/CAM computer modeling allow reducing the time and costs of developing a rational wheel geometry that meets the criterion of both the strength of the wheel itself and the criterion of vibration activity of the rotor shaftReferences
- Stel, H., Sirino, T., Ponce, F. J., Chiva, S., Morales, R. E. M. (2015). Numerical investigation of the flow in a multistage electric submersible pump. Journal of Petroleum Science and Engineering, 136, 41–54. doi: https://doi.org/10.1016/j.petrol.2015.10.038
- Korkmaz, E., Gölcü, M., Kurbanoğlu, C. (2017). Effects of Blade Discharge Angle, Blade Number and Splitter Blade Length on Deep Well Pump Performance. Journal of Applied Fluid Mechanics, 10 (2), 529–540. doi: https://doi.org/10.18869/acadpub.jafm.73.239.26056
- Liu, H. (2010). Effects of Blade Number on Characteristics of Centrifugal Pumps. Chinese Journal of Mechanical Engineering, 23 (06), 742. doi: https://doi.org/10.3901/cjme.2010.06.742
- Bai, Y., Kong, F., Xia, B., Liu, Y. (2017). Effect of blade number matching of impeller and diffuser in high-speed rescue pump. Advances in Mechanical Engineering, 9 (5), 168781401770359. doi: https://doi.org/10.1177/1687814017703595
- Farah, E., Selamat, F., Iskandar, W., Izhan, W. (2018). Design and Analysis of Centrifugal Pump Impeller for Performance Enhancement. Journal of Mechanical Engineering, SI5 (2), 36–53. Available at: https://www.researchgate.net/publication/324690069
- Tamin, M. N., Hamzah, M. A. (2017). Fatigue Failure Analysis of a Centrifugal Pump Shaft. Failure Analysis and Prevention. doi: https://doi.org/10.5772/intechopen.70672
- Onari, M. M., Arzani, V. G. (2014). Repetitive Shaft Crack Failure Analysis on a Multistage Centrifugal Pump In Reactor Charge Service In A Nuclear Power Plant - Based On ODS And FEA. Turbomachinery Laboratories. doi: https://doi.org/10.21423/R1D34J
- Pukhliy, V. A. (2015). To calculation of disks of centrifugal pumps of hydraulic engineering constructions and the atomic power station. Teoriya mehanizmov i mashin, 13, 41–50. Available at: http://tmm.spbstu.ru/25/Pukhliy_25.pdf
- Zakirnichnaya, M. M., Devyatov, A. R. (2010). Otsenka ekspluatatsionnoy dolgovechnosti rabochih koles tsentrobezhnyh nasosnyh agregatov. Neftegazovoe delo, 2. Available at: http://ogbus.ru/files/ogbus/authors/Zakirnichnaja/Zakirnichnaja_2.pdf
- Isametova, M., Absadykov, B., Batyrgaliyev, M., Borovik, I. (2018). Centrifugal pump rotor dynamics study. NEWS of National Academy of Sciences of the Republic of Kazakhstan, 5 (431), 226–233. doi: https://doi.org/10.32014/2018.2518-170x.29
- Zhou, L., Shi, W., Wu, S. (2013). Performance Optimization in a Centrifugal Pump Impeller by Orthogonal Experiment and Numerical Simulation. Advances in Mechanical Engineering, 5, 385809. doi: https://doi.org/10.1155/2013/385809
- Anofriev, V. Yu., Getsov, L. B., Nozhnitskiy, Yu. A. (2005). Obespechenie prochnostnoy nadezhnosti koles tsentrobezhnyh kompressorov iz vysokoprochnyh staley (Chast' 1). Aviatsionno-kosmicheskaya tehnika i tehnologiya, 6 (22), 16–23. Available at: http://nbuv.gov.ua/UJRN/aktit_2005_6_5
- Kuzmenko, M. L., Chigrin, V. S., Belova, S. E. (2005). Staticheskaya prochnost' rabochih lopatok i diskov kompressorov i turbin GTD. Rybinsk: RGATA, 74. Available at: http://window.edu.ru/resource/949/76949/files/statika.pdf
- Sedunin, V. A., Nuss, A. S., Serkov, S. A. (2016). Studying the Strength Characteristics of Axial Compressor Blades. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 3 (108), 90–99. doi: https://doi.org/10.18698/0236-3941-2016-3-90-99
- Marius, S. (2018). On the durability of progressive cavities pumps. Fiabilitate si Durabilitate – Fiability & Durability, 1, 187–192. Available at: https://www.researchgate.net/publication/325595039
- Kostyuk, A. G. (2007). Dinamika i prochnost' turbomashin. Moscow: Izdatel'skiy dom MEI, 476. Available at: http://en.bookfi.net/book/651014
- La Roche-Carrier, N., Dituba Ngoma, G., Ghie, W. (2013). Numerical Investigation of a First Stage of a Multistage Centrifugal Pump: Impeller, Diffuser with Return Vanes, and Casing. ISRN Mechanical Engineering, 2013, 1–15. doi: https://doi.org/10.1155/2013/578072
- Huang, S., Islam, M. F., Liu, P. (2006). Numerical simulation of 3D turbulent flow through an entire stage in a multistage centrifugal pump. International Journal of Computational Fluid Dynamics, 20 (5), 309–314. doi: https://doi.org/10.1080/10618560600916981
- Lokalov, G. A., Markovskiy, V. M. (2016). Osevye i tsentrobezhnye nasosy teplovyh elektricheskih stantsiy. Ekaterinburg: Izdatel'stvo Ural'skogo universiteta, 140. Available at: http://hdl.handle.net/10995/40672
- Zhilkin, V. A. (2013). Azbuka inzhenernyh raschetov v MSC Patran-Nastran-Marc. Sankt-Peterburg: Prospekt Nauki, 574. Available at: http://biblioclub.ru/index.php?page=book&id=565820
- Zhang, Z. C., Wang, F. J., Yao, Z. F., Leng, H. F., Zhou, P. J. (2013). Investigation on impeller radial force for double-suction centrifugal pump with staggered blade arrangement. IOP Conference Series: Materials Science and Engineering, 52 (3), 032009. doi: https://doi.org/10.1088/1757-899x/52/3/032009
- Ginesin, L. Yu. (2000). Primenenie MSC.NASTRAN dlya analiza dinamiki rotorov. Moscow: MSCSoftware, 28.
- Ualiev, G. U., Bisembaev, K., Omіrzhanov, Zh. M. (2009). Terbelіster teriyasy. Almaty: KazPU im Abaya.
- Zhang, Y., Hu, S., Zhang, Y., Chen, L. (2014). Optimization and Analysis of Centrifugal Pump considering Fluid-Structure Interaction. The Scientific World Journal, 2014, 1–9. doi: https://doi.org/10.1155/2014/131802
- Zhao, W. Y., Ge, J. G., Ma, D., Li, C. M., Bao, S. B. (2013). Vibration analysis of large centrifugal pump rotors. IOP Conference Series: Materials Science and Engineering, 52 (2), 022033. doi: https://doi.org/10.1088/1757-899x/52/2/022033
- Sokolov, E. V. (2008). Modelirovanie i issledovanie dinamicheskih i gidrodinamicheskih protsessov v tsentrobezhnyh nasosah massopodvodyashchih sistem bumagodelatel'nyh mashin. Sankt-Peterburg, 188.
- Sokolov, E. B., Ankudinov, D. T., Feofanov, A. V. (2006). Dinamicheskie protsessy nagruzheniya detaley tsentrobezhnyh himicheskih nasosov. Nasosy i oborudovanie, 2, 22–24.
- Zlenko, M. A., Nagaytsev, M. V., Dovbysh, V. M. (2015). Additivnye tehnologii v mashinostroenii. Moscow: GNTS RF FGUP «NAMI», 220.
- Yan, Y., Li, S., Zhang, R., Lin, F., Wu, R., Lu, Q. et. al. (2009). Rapid prototyping and manufacturing technology: Principle, representative technics, applications, and development trends. Tsinghua Science and Technology, 14 (S1), 1–12. doi: https://doi.org/10.1016/s1007-0214(09)70059-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Madina Isametova, Dimitar Karaivanov, Rollan Nussipali
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.