Determination of the rational number of blades of the centrifugal wheel of a submersible pump

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.200998

Keywords:

submersible pump, centrifugal wheel, computer-aided design systems, amplitude-frequency response.

Abstract

The CAD/CAE/CAM method of end-to-end design of the impeller of a seven-stage submersible pump ODDESSEzentralasien –UPP 13-7/6 used for pumping sulfuric acid in hydrometallurgy is presented.

The studies are conducted in order to increase the efficiency of the pump manufactured at the KARLSKRONA LC AB LLP plant (Kazakhstan). Computer calculations of the centrifugal wheel with 8 and 9 blades for strength were carried out in the NASTRAN top-level CAE system. The influence of the number of centrifugal wheel blades on the level of stresses arising in the sections of the blades of the cover and main centrifugal wheel discs is determined. The maximum stress in the sections of the wheel with 8 blades reached 319 MPa and the wheel with 9 blades 199 MPa. The influence of the number of blades on the dynamic characteristics of the rotor shaft is examined. To do this, design mechanical and computer schemes of dynamic calculation are simulated to determine the amplitude-frequency characteristics of the rotor shaft. The harmonics amplitudes at frequencies caused by liquid pulsation at the blade frequency of 400 Hz and 450 Hz reached 110-4 m and 810-4 m, respectively. Based on the results of computer modeling of static and dynamic problems, a model of the impeller of a centrifugal multistage pump with a rational number of 8 double curvature blades is developed. The choice of the number of blades meets the criterion of wheel strength and the dynamic criterion of the shaft-wheel system.

For the production of the prototype wheel, an analysis of the process parameters of 3D printing in terms of surface roughness of finished products is carried out. Based on the analysis, stereolithography the technology is chosen and centrifugal wheels are printed for further bench hydrodynamic tests in a plant. The studies based on CAD/CAE/CAM computer modeling allow reducing the time and costs of developing a rational wheel geometry that meets the criterion of both the strength of the wheel itself and the criterion of vibration activity of the rotor shaft

Author Biographies

Madina Isametova, Satbayev University Satpaev str., 22a, Almaty, Republic of Kazakhstan, 050013

PhD, Associate Professor

Department of Industrial Engineering

Dimitar Karaivanov, University of Chemical Technology and Metallurgy St. Kliment Ohridski blvd., 8, Sofia, Bulgaria, 1756

Doctor of Technical Sciences, Associate Professor

Department of Applied Mechanics

Rollan Nussipali, Satbayev University Satpaev str., 22a, Almaty, Republic of Kazakhstan, 050013

Doctoral Student

Department of Industrial Engineering

References

  1. Stel, H., Sirino, T., Ponce, F. J., Chiva, S., Morales, R. E. M. (2015). Numerical investigation of the flow in a multistage electric submersible pump. Journal of Petroleum Science and Engineering, 136, 41–54. doi: https://doi.org/10.1016/j.petrol.2015.10.038
  2. Korkmaz, E., Gölcü, M., Kurbanoğlu, C. (2017). Effects of Blade Discharge Angle, Blade Number and Splitter Blade Length on Deep Well Pump Performance. Journal of Applied Fluid Mechanics, 10 (2), 529–540. doi: https://doi.org/10.18869/acadpub.jafm.73.239.26056
  3. Liu, H. (2010). Effects of Blade Number on Characteristics of Centrifugal Pumps. Chinese Journal of Mechanical Engineering, 23 (06), 742. doi: https://doi.org/10.3901/cjme.2010.06.742
  4. Bai, Y., Kong, F., Xia, B., Liu, Y. (2017). Effect of blade number matching of impeller and diffuser in high-speed rescue pump. Advances in Mechanical Engineering, 9 (5), 168781401770359. doi: https://doi.org/10.1177/1687814017703595
  5. Farah, E., Selamat, F., Iskandar, W., Izhan, W. (2018). Design and Analysis of Centrifugal Pump Impeller for Performance Enhancement. Journal of Mechanical Engineering, SI5 (2), 36–53. Available at: https://www.researchgate.net/publication/324690069
  6. Tamin, M. N., Hamzah, M. A. (2017). Fatigue Failure Analysis of a Centrifugal Pump Shaft. Failure Analysis and Prevention. doi: https://doi.org/10.5772/intechopen.70672
  7. Onari, M. M., Arzani, V. G. (2014). Repetitive Shaft Crack Failure Analysis on a Multistage Centrifugal Pump In Reactor Charge Service In A Nuclear Power Plant - Based On ODS And FEA. Turbomachinery Laboratories. doi: https://doi.org/10.21423/R1D34J
  8. Pukhliy, V. A. (2015). To calculation of disks of centrifugal pumps of hydraulic engineering constructions and the atomic power station. Teoriya mehanizmov i mashin, 13, 41–50. Available at: http://tmm.spbstu.ru/25/Pukhliy_25.pdf
  9. Zakirnichnaya, M. M., Devyatov, A. R. (2010). Otsenka ekspluatatsionnoy dolgovechnosti rabochih koles tsentrobezhnyh nasosnyh agregatov. Neftegazovoe delo, 2. Available at: http://ogbus.ru/files/ogbus/authors/Zakirnichnaja/Zakirnichnaja_2.pdf
  10. Isametova, M., Absadykov, B., Batyrgaliyev, M., Borovik, I. (2018). Centrifugal pump rotor dynamics study. NEWS of National Academy of Sciences of the Republic of Kazakhstan, 5 (431), 226–233. doi: https://doi.org/10.32014/2018.2518-170x.29
  11. Zhou, L., Shi, W., Wu, S. (2013). Performance Optimization in a Centrifugal Pump Impeller by Orthogonal Experiment and Numerical Simulation. Advances in Mechanical Engineering, 5, 385809. doi: https://doi.org/10.1155/2013/385809
  12. Anofriev, V. Yu., Getsov, L. B., Nozhnitskiy, Yu. A. (2005). Obespechenie prochnostnoy nadezhnosti koles tsentrobezhnyh kompressorov iz vysokoprochnyh staley (Chast' 1). Aviatsionno-kosmicheskaya tehnika i tehnologiya, 6 (22), 16–23. Available at: http://nbuv.gov.ua/UJRN/aktit_2005_6_5
  13. Kuzmenko, M. L., Chigrin, V. S., Belova, S. E. (2005). Staticheskaya prochnost' rabochih lopatok i diskov kompressorov i turbin GTD. Rybinsk: RGATA, 74. Available at: http://window.edu.ru/resource/949/76949/files/statika.pdf
  14. Sedunin, V. A., Nuss, A. S., Serkov, S. A. (2016). Studying the Strength Characteristics of Axial Compressor Blades. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 3 (108), 90–99. doi: https://doi.org/10.18698/0236-3941-2016-3-90-99
  15. Marius, S. (2018). On the durability of progressive cavities pumps. Fiabilitate si Durabilitate – Fiability & Durability, 1, 187–192. Available at: https://www.researchgate.net/publication/325595039
  16. Kostyuk, A. G. (2007). Dinamika i prochnost' turbomashin. Moscow: Izdatel'skiy dom MEI, 476. Available at: http://en.bookfi.net/book/651014
  17. La Roche-Carrier, N., Dituba Ngoma, G., Ghie, W. (2013). Numerical Investigation of a First Stage of a Multistage Centrifugal Pump: Impeller, Diffuser with Return Vanes, and Casing. ISRN Mechanical Engineering, 2013, 1–15. doi: https://doi.org/10.1155/2013/578072
  18. Huang, S., Islam, M. F., Liu, P. (2006). Numerical simulation of 3D turbulent flow through an entire stage in a multistage centrifugal pump. International Journal of Computational Fluid Dynamics, 20 (5), 309–314. doi: https://doi.org/10.1080/10618560600916981
  19. Lokalov, G. A., Markovskiy, V. M. (2016). Osevye i tsentrobezhnye nasosy teplovyh elektricheskih stantsiy. Ekaterinburg: Izdatel'stvo Ural'skogo universiteta, 140. Available at: http://hdl.handle.net/10995/40672
  20. Zhilkin, V. A. (2013). Azbuka inzhenernyh raschetov v MSC Patran-Nastran-Marc. Sankt-Peterburg: Prospekt Nauki, 574. Available at: http://biblioclub.ru/index.php?page=book&id=565820
  21. Zhang, Z. C., Wang, F. J., Yao, Z. F., Leng, H. F., Zhou, P. J. (2013). Investigation on impeller radial force for double-suction centrifugal pump with staggered blade arrangement. IOP Conference Series: Materials Science and Engineering, 52 (3), 032009. doi: https://doi.org/10.1088/1757-899x/52/3/032009
  22. Ginesin, L. Yu. (2000). Primenenie MSC.NASTRAN dlya analiza dinamiki rotorov. Moscow: MSCSoftware, 28.
  23. Ualiev, G. U., Bisembaev, K., Omіrzhanov, Zh. M. (2009). Terbelіster teriyasy. Almaty: KazPU im Abaya.
  24. Zhang, Y., Hu, S., Zhang, Y., Chen, L. (2014). Optimization and Analysis of Centrifugal Pump considering Fluid-Structure Interaction. The Scientific World Journal, 2014, 1–9. doi: https://doi.org/10.1155/2014/131802
  25. Zhao, W. Y., Ge, J. G., Ma, D., Li, C. M., Bao, S. B. (2013). Vibration analysis of large centrifugal pump rotors. IOP Conference Series: Materials Science and Engineering, 52 (2), 022033. doi: https://doi.org/10.1088/1757-899x/52/2/022033
  26. Sokolov, E. V. (2008). Modelirovanie i issledovanie dinamicheskih i gidrodinamicheskih protsessov v tsentrobezhnyh nasosah massopodvodyashchih sistem bumagodelatel'nyh mashin. Sankt-Peterburg, 188.
  27. Sokolov, E. B., Ankudinov, D. T., Feofanov, A. V. (2006). Dinamicheskie protsessy nagruzheniya detaley tsentrobezhnyh himicheskih nasosov. Nasosy i oborudovanie, 2, 22–24.
  28. Zlenko, M. A., Nagaytsev, M. V., Dovbysh, V. M. (2015). Additivnye tehnologii v mashinostroenii. Moscow: GNTS RF FGUP «NAMI», 220.
  29. Yan, Y., Li, S., Zhang, R., Lin, F., Wu, R., Lu, Q. et. al. (2009). Rapid prototyping and manufacturing technology: Principle, representative technics, applications, and development trends. Tsinghua Science and Technology, 14 (S1), 1–12. doi: https://doi.org/10.1016/s1007-0214(09)70059-8

Downloads

Published

2020-04-30

How to Cite

Isametova, M., Karaivanov, D., & Nussipali, R. (2020). Determination of the rational number of blades of the centrifugal wheel of a submersible pump. Eastern-European Journal of Enterprise Technologies, 2(7 (104), 49–58. https://doi.org/10.15587/1729-4061.2020.200998

Issue

Section

Applied mechanics