Design and simulation a video steganography system by using FFT­turbo code methods for copyrights application

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.201010

Keywords:

video Steganography, copyright, fast Fourier transform, turbo-code, least two significant bit

Abstract

Protecting information on various communication media is considered an essential requirement in the present information transmission technology. So, there is a continuous search around different modern techniques that may be used to protect the data from the attackers. Steganography is one of those techniques that can be used to maintain the copyright by employing it to cover the publisher logo image inside the video frames. Nowadays, most of the popular known of the Video-Steganography methods become a conventional technique to the attacker, so there is a requirement for a modern and smart strategy to protect the copyright of the digital video file. Where this proposed system goal to create a hybrid system that combines the properties of Cryptography and Steganography work to protect the copyright hidden data from different attack types with maintaining of characteristics of the original video (quality and resolution). In this article, a modern Video-Steganography method is presented by employing the benefits of TC (Turbo code) to encrypt the pixels of logo image and Least two Significant Bit Technique procedure to embed the encryption pixels inside the frames of the video file. The insertion is performed in the frequency domain by applying the Fast Fourier Transform (FFT)on the video frames. The examination of the suggested architecture is done by terms of Structural Similarity Index, MSE (mean squared error), and PSNR (peak signal-to-noise ratio) by comparing between an original and extracted logo as well as between original and Steganographic video (averaged overall digital frames in the video). The simulation results show that this method proved high security, robustness, capacity and produces a substantial performance enhancement over the present known ways with fewer distortions in the quality of the video

Author Biographies

Abbas Ali Hussein, University of Babylon Al-Hillah, Babylon, Iraq

Master Student

Department of Electrical Engineering

Osama Qasim Jumah Al-Thahab, University of Babylon Al-Hillah, Babylon, Iraq

Professor, Doctor of Electronics and Communications Engineering

Department of Electrical Engineering

References

  1. Sadek, M. M., Khalifa, A. S., Mostafa, M. G. M. (2014). Video steganography: a comprehensive review. Multimedia Tools and Applications, 74 (17), 7063–7094. doi: https://doi.org/10.1007/s11042-014-1952-z
  2. Selvigrija, P., Ramya, E. (2015). Dual steganography for hiding text in video by linked list method. 2015 IEEE International Conference on Engineering and Technology (ICETECH). doi: https://doi.org/10.1109/icetech.2015.7275018
  3. Tyagi, V. (2012). Image steganography using least significant bit with cryptography. Journal of global research in computer science, 3 (3), 53–55.
  4. Ramalingam, M., Isa, N. A. M. (2016). A data-hiding technique using scene-change detection for video steganography. Computers & Electrical Engineering, 54, 423–434. doi: https://doi.org/10.1016/j.compeleceng.2015.10.005
  5. Rahna, E., Govindan, V. K. (2013). A Novel Technique for Secure, Lossless Steganography with Unlimited Payload. International Journal of Future Computer and Communication, 2 (6), 638–641. doi: https://doi.org/10.7763/ijfcc.2013.v2.243
  6. Sadek, M. M., Khalifa, A. S., Mostafa, M. G. M. (2016). Robust video steganography algorithm using adaptive skin-tone detection. Multimedia Tools and Applications, 76 (2), 3065–3085. doi: https://doi.org/10.1007/s11042-015-3170-8
  7. Shakeela, S., Arulmozhivarman, P., Chudiwal, R., Pal, S. (2016). Double coding mechanism for robust audio data hiding in videos. 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). doi: https://doi.org/10.1109/rteict.2016.7807979
  8. Sushmitha, M. C., Suresh, H. N., Manikandan, J. (2017). An approach towards novel video steganography for consumer electronics. 2017 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). doi: https://doi.org/10.1109/icce-asia.2017.8307831
  9. Fan, M., Liu, P., Wang, H., Sun, X. (2016). Cross correlation feature mining for steganalysis of hash based least significant bit substitution video steganography. Telecommunication Systems, 63 (4), 523–529. doi: https://doi.org/10.1007/s11235-016-0139-5
  10. Rana, S., Bhogal, R. K. (2018). A Highly Secure Video Steganography Inside DWT Domain Hinged on BCD Codes. Intelligent Communication, Control and Devices, 719–729. doi: https://doi.org/10.1007/978-981-10-5903-2_74
  11. Mumthas, S., Lijiya, A. (2017). Transform Domain Video Steganography Using RSA, Random DNA Encryption and Huffman Encoding. Procedia Computer Science, 115, 660–666. doi: https://doi.org/10.1016/j.procs.2017.09.152
  12. Balu, S., Babu, C. N. K., Amudha, K. (2018). Secure and efficient data transmission by video steganography in medical imaging system. Cluster Computing, 22 (S2), 4057–4063. doi: https://doi.org/10.1007/s10586-018-2639-4
  13. Ononiwu R., Okengwu, U. (2020). Efficient Steganography on Video File using Discrete Cosine Transform Method (DCTM). International Journal of Computer Applications, 176 (11), 22–28. doi: https://doi.org/10.5120/ijca2020920051
  14. Mstafa, R. J., Elleithy, K. M. (2015). A New Video Steganography Algorithm Based on the Multiple Object Tracking and Hamming Codes. 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). doi: https://doi.org/10.1109/icmla.2015.117
  15. Ai, L. (2015). Research on Legal Issue of Copyright Protection in the Internet. Proceedings of the 2015 International Conference on Economy, Management and Education Technology. doi: https://doi.org/10.2991/icemet-15.2015.54
  16. Manaf, A. A., Boroujerdizade, A., Mousavi, S. M. (2016). Collusion-resistant digital video watermarking for copyright protection application. International Journal of Applied Engineering Research, 11 (5), 3484–3495. Available at: https://www.scopus.com/record/display.uri?eid=2-s2.0-84964047806&origin=inward&txGid=2d524ac0ac11dc78432a3692b06ab74a
  17. Barbier, J., Filiol, E. (2009). Overview of Turbo-Code Reconstruction Techniques. IACR Cryptology ePrint Archive. Available at: https://eprint.iacr.org/2009/068.pdf
  18. Shaheen, F., Butt, M. F. U., Agha, S., Ng, S. X., Maunder, R. G. (2019). Performance Analysis of High Throughput MAP Decoder for Turbo Codes and Self Concatenated Convolutional Codes. IEEE Access, 7, 138079–138093. doi: https://doi.org/10.1109/access.2019.2942152
  19. Xu, S., Liu, B., Zhang, L., Xin, X., Rahat, Rao, L. et. al. (2017). Low complexity turbo matching coded optical transmission system based on code weight decision. 2017 16th International Conference on Optical Communications and Networks (ICOCN). doi: https://doi.org/10.1109/icocn.2017.8121491
  20. Moon, T. K. (2005). Error correction coding: mathematical methods and algorithms. John Wiley & Sons, 800. doi: https://doi.org/10.1002/0471739219
  21. Abrantes, S. A. (2004). From BCJR to turbo decoding: MAP algorithms made easier. Faculdade de Engenharia da Universidade do Porto (FEUP). Available at: https://repositorio-aberto.up.pt/bitstream/10216/19735/2/41921.pdf
  22. Le, V. H. S., Abdel Nour, C., Boutillon, E., Douillard, C. (2020). Revisiting the Max-Log-Map Algorithm With SOVA Update Rules: New Simplifications for High-Radix SISO Decoders. IEEE Transactions on Communications, 68 (4), 1991–2004. doi: https://doi.org/10.1109/tcomm.2020.2966723
  23. Al-Thahab, O. Q. J. (2016). Speech recognition based Radon-Discrete Cosine Transforms by Delta Neural Network learning rule. 2016 International Symposium on Fundamentals of Electrical Engineering (ISFEE). doi: https://doi.org/10.1109/isfee.2016.7803208
  24. Nugraha, R. M. (2011). Implementation of Direct Sequence Spread Spectrum steganography on audio data. Proceedings of the 2011 International Conference on Electrical Engineering and Informatics. doi: https://doi.org/10.1109/iceei.2011.6021662
  25. Shaukat, A., Chaurasia, M., Sanyal, G. (2016). A novel image steganographic technique using fast fourier transform. 2016 International Conference on Recent Trends in Information Technology (ICRTIT). doi: https://doi.org/10.1109/icrtit.2016.7569519
  26. Al-thahab, O., Hassan, H. (2019). RGB Image Watermarking System based on Cubic Spline Controller Key for Copyright Applications. Jour of Adv Research in Dynamical & Control Systems, 11 (01), 1896–1905.
  27. Shinde, P., Rehman, D. T. (2015). A Survey: Video Steganography Techniques. International Journal of Engineering Research and General Science, 3 (3), 1457–1464.
  28. Deshmukh, P., Rahangdale, B. (2014). Data Hiding using Video Steganography. International Journal of Engineering Research & Technology, 3 (4), 856–860.
  29. Paul, R., Acharya, A. K., Batham, S., Yadav, V. K. (2013). Hiding large amount of data using a new approach of video steganography. Confluence 2013: The Next Generation Information Technology Summit (4th International Conference). doi: https://doi.org/10.1049/cp.2013.2338
  30. Hanafy, A. A., Salama, G. I., Mohasseb, Y. Z. (2008). A secure covert communication model based on video steganography. MILCOM 2008 - 2008 IEEE Military Communications Conference. doi: https://doi.org/10.1109/milcom.2008.4753107
  31. Naji, S. A., Mohaisen, H. N., Alsaffar, Q. S., Jalab, H. A. (2020). Automatic region selection method to enhance image-based steganography. Periodicals of Engineering and Natural Sciences, 8 (1), 67–78. doi: http://dx.doi.org/10.21533/pen.v8i1.1092
  32. Wang, Z., Bovik, A. C., Sheikh, H. R., Simoncelli, E. P. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13 (4), 600–612. doi: https://doi.org/10.1109/tip.2003.819861
  33. Mohammed Ali, S. I., Ghazi Ali, M., Abd Zaid Qudr, L. (2019). PDA: A Private Domains Approach for Improved MSB Steganography Image. Periodicals of Engineering and Natural Sciences (PEN), 7 (3), 1405–1411. doi: https://doi.org/10.21533/pen.v7i3.776
  34. Mstafa, R. J., Elleithy, K. M. (2014). A highly secure video steganography using Hamming code (7, 4). IEEE Long Island Systems, Applications and Technology (LISAT) Conference 2014. doi: https://doi.org/10.1109/lisat.2014.6845191
  35. Hashemzadeh, M. (2018). Hiding information in videos using motion clues of feature points. Computers & Electrical Engineering, 68, 14–25. doi: https://doi.org/10.1016/j.compeleceng.2018.03.046
  36. Hu, S. D. (2011). A Novel Video Steganography Based on Non-uniform Rectangular Partition. 2011 14th IEEE International Conference on Computational Science and Engineering. doi: https://doi.org/10.1109/cse.2011.24

Downloads

Published

2020-04-30

How to Cite

Ali Hussein, A., & Jumah Al-Thahab, O. Q. (2020). Design and simulation a video steganography system by using FFT­turbo code methods for copyrights application. Eastern-European Journal of Enterprise Technologies, 2(9 (104), 43–55. https://doi.org/10.15587/1729-4061.2020.201010

Issue

Section

Information and controlling system