Development of a diagnosing system for the absorption-distillation department of soda ash production

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.201552

Keywords:

soda ash, diagnosing system, logical decision tables, analysis vector

Abstract

Production of soda ash using the ammonia method belongs to the class of complex continuous chemical-technological systems and is characterized by multidimensionality, inertia, the existence of cycles of material flows, complex dependences between the input and output parameters of technological modes. The research into the operation of this production and its performance indicators revealed that 24–26 % of losses in soda ash production were caused by violations of the technological mode at the absorption-distillation department. Many of these violations can be prevented, and losses can be significantly reduced, by developing a system of diagnosing the state of technological processes at this department. The main task of the diagnosing system at the absorption-distillation department is to determine the moment of transition of the technological process to the emergency state, disabling the control system, informing a technologist-operator about the probable cause of the emergency, and giving recommendations for its elimination. After the elimination of the reasons for the deviation of the technological process from normal functioning, the measures on switching on the control system are taken. The system of diagnosing an absorption-distillation department of soda ash production should be implemented based on the passive observations of the course of the technological process. This is due to the continuity of production, on the one hand, and the requirement to adhere to the mode of the normal functioning of the technological process, on the other hand. The results of the analysis of diagnosing emergencies prove that the implementation of the method of logical decision tables will enhance the speed of the diagnosing process and improve its quality due to the prevention and timely liquidation of emergencies. It was established that if the same emergency analysis vector corresponds to different causes of emergencies in this system, it is necessary to use characteristics of the statistical theory of solutions

Author Biographies

Alevtyna Pereverzieva, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Postgraduate Student

Department of Automation of Technical Systems and Environmental Monitoring

Anatoly Bobukh, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Automation of Technical Systems and Environmental Monitoring

 

Mikhail Podustov, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Automation of Technical Systems and Environmental Monitoring

References

  1. Steinhauser, G. (2008). Cleaner production in the Solvay Process: general strategies and recent developments. Journal of Cleaner Production, 16 (7), 833–841. doi: https://doi.org/10.1016/j.jclepro.2007.04.005
  2. Bobukh, A. A., Dzevochko, A. M., Podustov, M. A., Pereverzeva, A. N., Romanenko, R. S. (2015). Selection and optimization criteria control for object of absorption-desorption in soda ash production. Intehrovani tekhnolohiyi ta enerhozberezhennia, 4, 72–81.
  3. Zaytsev, I. D., Tkach, G. A., Stoev, N. D. (1984). Proizvodstvo sody. Moscow: Himiya, 312.
  4. Ladaniuk, A. P., Zaiets, N. A., Vlasenko, L. O. (2016). Suchasni tekhnolohiyi konstruiuvannia system avtomatyzatsiyi skladnykh obiektiv (merezhevi struktury, adaptatsiya, diahnostyka ta prohnozuvannia). Kyiv: Vydavnytstvo Lira-K, 312.
  5. Cheng, S. E. (2011). Manufacturing Execution System Based on the Soda Ash Industry. Advanced Materials Research, 383-390, 780–784. doi: https://doi.org/10.4028/www.scientific.net/amr.383-390.780
  6. Czichos, H. (2014). Technical diagnostics: principles, method, and application. The journal of measurement science, 9, 32–40.
  7. Vlasenko, L. O., Ladanyuk, A. P., Sich, M. A. (2014). Statisticheskaya diagnostika protsessa funktsionirovaniya vyparnoy stantsii saharnogo zavoda. Avtomatyzatsiya tekhnolohichnykh ta biznes protsesiv, 2, 50–60.
  8. Pankin, A. M. (2010). Nekotorye voprosy metodologii diagnostirovaniya nepreryvnyh tehnicheskih obektov. Trudy mezhdunarodnogo simpoziuma «nadezhnost' i kachestvo», 1, 42–48.
  9. Mekkel, A. M. (2017). Diagnostic model of possible states of an object. T-Comm, 11 (7), 31–37.
  10. Duer, S., Duer, R. (2010). Diagnostic system with an artificial neural network which determines a diagnostic information for the servicing of a reparable technical object. Neural Computing and Applications, 19 (5), 755–766. doi: https://doi.org/10.1007/s00521-009-0333-4
  11. Bobuh, A. A., Kovalev Hark, D. A. (2013). Komp'yuterno-integrirovannaya sistema avtomatizatsii tehnologicheskih obektov upravleniya tsentralizovannym teplosnabzheniem. Kharkiv: HNAGH, 226.
  12. Bigus, G. A., Daniev, Yu. F., Bystrova, N. A., Galkin, D. I. (2014). Diagnostika tehnicheskih ustroystv. Moscow: Izd-voMGTU im. N.E. Baumana, 615.
  13. Mahutov, N. A., Permyakov, V. N., Ahmethanov, R. S. et. al. (2017). Diagnostika i monitoring sostoyaniya slozhnyh tehnicheskih sistem. Tyumen': TIU, 632.
  14. Glushchenko, P. V. (2004). Tehnicheskaya diagnostika: Modelirovanie v diagnostirovanii i prognozirovanii sostoyaniya tehnicheskih obektov. Moscow: Vuzovskaya kniga, 248.
  15. Dorf, R. C., Bishop, R. H. (2014). Modern Control Systems. Pearson India, 1048.
  16. Ramachandran, K. M., Tsokos, C. P. (2014). Mathematical Statistics with Applications. Elsevier, 848.
  17. Fogel, D. B., Liu, D., Keller, J. M. (2016). Fundamentals of Computational Intelligence. Wiley. doi: https://doi.org/10.1002/9781119214403
  18. Moshkov, M., Zielosko, B. (2011). Combinatorial Machine Learning. Springer. doi: https://doi.org/10.1007/978-3-642-20995-6

Downloads

Published

2020-04-30

How to Cite

Pereverzieva, A., Bobukh, A., & Podustov, M. (2020). Development of a diagnosing system for the absorption-distillation department of soda ash production. Eastern-European Journal of Enterprise Technologies, 2(2 (104), 52–59. https://doi.org/10.15587/1729-4061.2020.201552