Diffusion of polar and non-polar molecules in a polymer membrane

Authors

  • Инесса Анатольевна Буртная National Technical University of Ukraine "Kyiv Polytechnic Institute" Pobedy avenue, 37, Building 4, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-4550-9022
  • Отар Отарович Гачечиладзе Director JP "The Georgian-Ukrainian House" Museyniy bystreet, 10, Kyiv, Ukraine, 01001, Ukraine https://orcid.org/0000-0002-9702-7167
  • Людмила Ивановна Ружинская National Technical University of Ukraine "Kyiv Polytechnic Institute" Prospect, 37, Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-1223-7649
  • Михаил Михайлович Мурашко National Technical University of Ukraine "Kyiv Polytechnic Institute" Prospect, 37, Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-4426-0088

DOI:

https://doi.org/10.15587/1729-4061.2014.20162

Keywords:

Fickian diffusion, swelling, dissolution, polar and non–polar solvents, polymer membrane

Abstract

Diffusion of small molecules of different polarities in polymeric membranes is the most interesting in terms of studying thermodynamic and kinetic parameters of the separation process of liquid multicomponent organic mixtures. In the paper, the principle emphasis is made on diffusion mechanisms of polar and non–polar molecules in flexible, non–polar organic–silicon polymers. For estimating the diffusion rate and determining diffusion mechanisms, the experiments on adsorption and desorption of a number of samples at constant temperature and pressure have been conducted. Dynamics of the curves shows possible kinetic processes, occurring in polymer at its dissolution into non–polar solvents differing in a molecular size. The similar studies have been carried out using polar solvents with different dipole molecular moments. It has shown that the limited dissolution rate for polar solvents compared to non–polar ones is low. It has been found that the principal mechanism of diffusion in the polymer under its dissolving in polar solvents is the Fickian diffusion. Herewith, at the beginning of a sorption process the diffusion runs very fast, and then the process slows down significantly and a macromolecular matrix manages to complete relaxation, not allowing the solvent molecules to deform the lattice further. In the process of dissolving the polymer in solvents with non–polar molecules the main mechanism of diffusion is not the Fickian diffusion. Moreover, a more low–molecular solvent causes a high degree of swelling that is associated with a higher mobility of molecules and the possibility of their rapid penetration into the polymer depth at the beginning of dissolving. A long time “tail” while desorbing the polymer, dissolved in non–polar solvents shows that there is a second diffusion type. There are obvious micropores in the polymer, through which small non–polar molecules can be trapped and can form clusters with polymer alloys. When desorbing the temperature of carrying out the process is not sufficient for activating such centers.

Author Biographies

Инесса Анатольевна Буртная, National Technical University of Ukraine "Kyiv Polytechnic Institute" Pobedy avenue, 37, Building 4, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Bioengineering and Engineering. Faculty of Biotechnology and Bioengineering

Отар Отарович Гачечиладзе, Director JP "The Georgian-Ukrainian House" Museyniy bystreet, 10, Kyiv, Ukraine, 01001

Candidate of Physical and Mathematical Sciences

Людмила Ивановна Ружинская, National Technical University of Ukraine "Kyiv Polytechnic Institute" Prospect, 37, Kiev, Ukraine, 03056

Candidate of Technical Sciences

Department of Bioengineering and Engineering

Михаил Михайлович Мурашко, National Technical University of Ukraine "Kyiv Polytechnic Institute" Prospect, 37, Kiev, Ukraine, 03056

Student (Master)

Department of Bioengineering and Engineering

References

  1. Буртна, І. А. Процеси переносу в полімерних мембранах. Частина 3 [Текст] / І. А. Буртна, О. О. Гачечіладзе // Східно-Європейський журнал передових технологій. – 2013. – T. 6, №6 (66). – С. 4-7.
  2. Буртна, І. А. Процеси переносу в полімерних мембранах. Частина 2 [Текст] / І. А. Буртна // Східно-Європейський журнал передових технологій. – 2013. – T. 2, № 11 (62). – С. 41-44.
  3. Буртна, І. А. Процеси переносу в полімерних мембранах. Частина 1 [Текст] / І. А. Буртная, Л. І. Ружинска, О. О. Гачечіладзе, М. В. Шафаренко // Східно-Європейський журнал передових технологій. – 2013. – T. 1, № 6 (61). – С. 4-6.
  4. Shao, D. Polymeric membrane Pervaporation. [Теxt] / D. Shao, R. Y. M. Huang // Department of Chemical Engineering University of Waterloo, Ont, Canada. – 2006.
  5. Kloppfer, M. Transport Properties of Gases in Polymers: Bibliographic Review [Теxt] / M. H. Kloppfer, B. Flaconneche // Oil & Gas Science and Technology, Rev. IFP. – 2001. – V.56, 3. – Р. 223-244.
  6. Beth A. Hiller-Chou Areview of polymer dissolution [Теxt] / Beth A Hiller-Chou // Prog. Polym.Sci.Cleveland, USA. – 2003. – V. 28. – Р. 1223-1270.
  7. Marion K. Buckley-Smith The Use of Solubility Parameters to select membrane materials for Pervaporation of organic mixtures [Теxt] / K. Marion Buckley-Smith // The University of WAIKATO, Hamilton, NewZealand. – 2006. – Р. 18-56.
  8. Mohemmad Karimi Diffusion in Polymer Solids and Solutios [Теxt] / Karimi Mohemmad // Mass Transfer in Chemical Engineering Processes. – 2011. – V.2. – Р. 17-40.
  9. Placette, Mark D. A Dual Stage Model of Anomalous Moisture Diffusion and Desorption in Epoxy Mold Compounds [Теxt] / Mark D. Placette, Fan Xuejun // 12th.Int.Conf. on Thermal, Mechanical and Multiphysics simulation and Experiments in Microelectronics and Microsystems, EuroSimE. – 2011. – Р. 1-8.
  10. Allan, F. M. Handbook of Solubility Parameters [Теxt] / F. M. Allan, Ph. D. Barton // CRC Press. – 1983. - Р. 153-157.
  11. Burtna, I., Hachechiladze, O. (2013). Protsesy perenosu v polimernykh membranakh. Part 3. East European journal of enterprise technologies, 6, 6 (66), 4–7.
  12. Burtna, I. (2013). Protsesy perenosu v polimernykh membranakh. Part 2. Eastern-European journal of enterprise technologies, 2, 11(62), 41–44.
  13. Burtna, I., Ruzhinskaya, L., Hachechiladze, O., Shafarenko, M. (2013). Protsesy perenosu v polimernykh membranakh.Part 1. East European journal of enterprise technologies, 1, 6 (61), 4–6.
  14. Shao, D., Huang, R. Y. M. (2006). Polymeric membrane Pervaporation. Department of Chemical Engineering University of Waterloo, Ont, Canada.
  15. Kloppfer, M., Flaconneche, B. (2001). Transport Properties of Gasesin Polymers: Bibliographic Review. Oil & Gas Science and Technology, 56, 3, 223–244.
  16. Beth, A Hiller–Chou (2003). Areview of polymer dissolution. Prog. Polym.Sci.Cleveland, USA, 28, 1223–1270.
  17. Marion, K. Buckley–Smith (2006). The Use of Solubility Parameters to select membrane materials for Pervaporation of organic mixtures. The University of WAIKATO, Hamilton, NewZealand, 18–56.
  18. Mohemmad, Karimi (2011). Diffusion in Polymer Solids and Solutios. Mass Transfer in Chemical Engineering Processes, 2, 17–40.
  19. Mark, D. Placette, Xuejun Fan (2011). A Dual Stage Model of Anomalous Moisture Diffusion and Desorption in Epoxy Mold Compounds. 12th.Int.Conf. on Thermal, Mechanical and Multiphysics simulation and Experiments in Microelectronics and Microsystems, EuroSimE, 1–8.
  20. Allan F. M., Barton Ph. D. (1983). Handbook of Solubility Parameters . CRC Press, 153–157.

Published

2014-02-07

How to Cite

Буртная, И. А., Гачечиладзе, О. О., Ружинская, Л. И., & Мурашко, М. М. (2014). Diffusion of polar and non-polar molecules in a polymer membrane. Eastern-European Journal of Enterprise Technologies, 1(6(67), 17–22. https://doi.org/10.15587/1729-4061.2014.20162