Formation of chromium hydride in chromium being electrodeposited alloyed with hydrogen

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.20190

Keywords:

Chromium Hydride, Chromium being Electrodeposited, Alloying, Hydrogen, Intermediate Phase, Electrodeposition

Abstract

The aim of the work was experimental verification of validity of the recently discovered phenomenon of phase formation through a stage of liquid state in metals being electrodeposited. The idea of the work was based on the known fact, that during crystallization of liquid phase of a transitional metal (e.g. chromium) alloyed in significant concentration with non-metal of minor atomic radius (e.g. hydrogen) intermediate phases with simple crystal lattices (e.g. hydrides) appear. Therefore, if in electrodeposited chromium alloyed with hydrogen the chromium hydride will be detected, this result will indicate validity of the phenomenon of phase formation through a stage of liquid state in metals being electrodeposited. To find the variants of chromium alloying with hydrogen during its electrodeposition the method for estimation of the degree of hydrogen saturation of metals being electrodeposited was developed. Electrodeposition of chromium was accomplished in such conditions where the volume of hydrogen being formed on the cathode was 62700 times higher than the volume of chromium being formed, which indicated alloying of chromium during its electrodeposition with hydrogen in significant concentration. On the basis of the accomplished experiments the formation of chromium hydride during electrodeposition of chromium alloyed with hydrogen was found. The conclusion, that existence of intermediate phases in electrodeposited metals is a result of crystallization of liquid metallic phase being formed during electrochemical deposition of metals, was made. The obtained result proves the validity of the phenomenon of phase formation through a stage of liquid state in metals being electrodeposited.

Author Biographies

Олег Борисович Гирин, Ukrainian State University of Chemical Technology Prospekt Gagarina, 8, Dnipropetrovsk, Ukraine 49005

Doctor of Science (Engineering), Professor, Head of the Department

Department of Materials Science

Игорь Демьянович Захаров, Ukrainian State University of Chemical Technology Prospekt Gagarina, 8, Dnipropetrovsk, Ukraine 49005

Senior Researcher

Department of Materials Science

References

  1. Brandes, H. Zur Theorie des Kristallwachstums [Text] / H. Brandes, M. Volmer // Zeitschrift fur physikalische Chemie. – 1931. – Bd. 155. – № 6. – Р. 466-470.
  2. Странский, И. Н. К теории роста кристаллов и образования кристаллических зародышей [Текст] / И. Н. Странский, Р. Каишев // Успехи физических наук. – 1939. – Т. 21. – № 4. – С. 408-465.
  3. Горбунова, К. М. Элементарные процессы электрокристаллизации [Текст] / К. М. Горбунова, П. Д. Данков // Доклады Академии наук СССР. – 1945. – Т. 48. – № 1. – С. 15-18.
  4. Горбунова, К. М. Кристаллохимическая теория реального роста кристаллов при электролизе [Текст] / К. М. Горбунова, П. Д. Данков // Успехи химии. – 1948. – Т. 17. – № 6. – С. 710-732.
  5. Lorenz, W. Zur Theorie des elektrolytischen Kristallwachstums [Text] / W. Lorenz // Zeitschrift fur physikalische Chemie. – 1953. – Bd. 202. – № 3-4. – Р. 275-291.
  6. Vermilyea, D. A. On the Theory of Electrolytic Crystal Growth [Text] / D. A. Vermilyea // Journal of Chemical Physics. – 1956. – V. 25. – № 6. – P. 1254-1263.
  7. Gerischer, H. Zum Mechanismus der elektrolytischen Abscheidung und Auflosung fester Metalle [Text] / H. Gerischer // Zeitschrift fur Elektrochemie. – 1958. – Bd. 62. – № 3. – S. 256-264.
  8. Mehl, W. On the Mechanism of Electrolytic Deposition and Dissolution of Silver [Text] / W. Mehl, J. O’M. Bockris // Canadian Journal of Chemistry. – 1959. – V.37. – № 2. – P. 190-204.
  9. Milchev, A. Electrocrystallization. Fundamentals of Nucleation and Growth [Text] / A. Milchev. – New York : Kluwer Academic Publishers, 2002. – 265 p.
  10. Paunovic, M. Fundamentals of Electrochemical Deposition [Text] / M. Paunovic, M. Schlesinger – Hoboken : WILEYINTERSCIENCE, 2006. – 375 p.
  11. Budevski, E. Electrochemical Phase Formation and Growth [Text] / E. Budevski, G. Staikov, W. J. Lorenz – Weinheim : VCH, 2008. – 408 p.
  12. Girin, O. B. Phenomenon of Precipitation of Metal Being Electrodeposited, Occurring via Formation of an Undercooled Liquid Metal Phase and its Subsequent Solidification. Part 1. Experimental Detection and Theoretical Grounding [Text] / O. B. Girin // Materials Development and Processing. – Weinheim : WILEY-VCH, 2000. – V. 8. – P. 183-188.
  13. Girin, O. B. Phenomenon of Precipitation of Metal Being Electrodeposited, Occurring via Formation of an Undercooled Liquid Metal Phase and its Subsequent Solidification. Part 2. Experimental Verification [Text] / O. B. Girin // Materials Development and Processing. – Weinheim : WILEY-VCH, 2000. – V. 8. – P. 189-194.
  14. Girin, O. B. Phenomenon of Structure Formation of Metals being Electrodeposited via a Super-Cooled Metal Liquid, and its Use for the Development of Advanced Technologies of Depositing New Types of Protective Composite Coats on Canned Food Steel Sheet [Text] / O. B. Girin // Proc. of the 5th Int. Sci. Forum AFES. – Paris: Int. Acad. of Engn, 2004. – P. 142–147.
  15. Girin, O. B. Phase Transformations in the Metallic Materials being Electrodeposited and Their Application for the Development of Advanced Technologies for Anticorrosive Protection of Canned-Food Steel Sheet [Text] / O. B. Girin // Materials Science Forum. – 2007. – V. 561-565. – P. 2369-2372.
  16. Girin, O. B. Phase and Structure Formation of Metallic Materials Electrodeposited via a Liquid State Stage: New Experimental Proof [Text] / O. B. Girin // Defect and Diffusion Forum. – 2010. – V. 303-304. – P. 99-105.
  17. Girin, O. B. Phase Formation through a Stage of Liquid State in Metallic Materials being Electrodeposited: Recent Experimental Proofs [Text] / O. B. Girin // International Journal of Material Science. – 2012. – V. 2. – №4. – P. 108-118.
  18. Михеева, В. И. Гидриды переходных металлов [Текст] : монография / В. И. Михеева. – М. : АН СССР, 1960. – 212 с.
  19. Гельд, В. П. Водород в металлах и сплавах [Текст] : монография / В. П. Гельд, Р. А. Рябов. – М. : Металлургия, 1974. – 272 с.
  20. Ямпольский, А. М. Краткий справочник гальванотехника [Текст] / А. М. Ямпольский, В. А. Ильин. – Л. : Машиностроение, 1981. – 269 с.
  21. Brandes, H., Volmer, H. (1931). Zur Theorie des Kristallwachstums. Zeitschrift fur physikalische Chemie, 155 (6), 466-470.
  22. Stranskii, I. N., Kaishev, R. (1939). To the Theory of Crystal Growth and Crystal Nuclei Formation. Uspehi fizicheskih nauk, 21 (4), 408-465.
  23. Gorbunova, K. M., Dankov, P. D. (1945). Elementary processes of electrocrystallization. Doklady Akademii nauk SSSR, 48 (1), 15-18.
  24. Gorbunova, K. M., Dankov, P. D. (1948). Crystal-chemical theory of real growth of crystals during electrolysis. Progress of Chemistry, 17 (6), 710-732.
  25. Lorenz, W. (1953). Zur Theorie des elektrolytischen Kristallwachstums. Zeitschrift fur physikalische Chemie, 202 (3-4), 275-291.
  26. Vermilyea, D. A. (1956). On the Theory of Electrolytic Crystal Growth. Journal of Chemical Physics, 25 (6), 1254-1263.
  27. Gerischer, H. (1958). Zum Mechanismus der elektrolytischen Abscheidung und Auflosung fester Metalle. Zeitschrift fur Elektrochemie, 62 (3), 256-264.
  28. Mehl, W., Bockris, J. O’M. (1959). On the Mechanism of Electrolytic Deposition and Dissolution of Silver. Canadian Journal of Chemistry, 37 (2), 190-204.
  29. Milchev, A. (2002). Electrocrystallization. Fundamentals of Nucleation and Growth. New York, USA : Kluwer Academic Publishers, 265.
  30. Paunovic, M., Schlesinger, M. (2006). Fundamentals of Electrochemical Deposition. Hoboken, USA : WILEY-INTERSCIENCE, 375.
  31. Budevski, E., Staikov, G., Lorenz, W. J. (2008). Electrochemical Phase Formation and Growth. Weinheim, Germany : WILEYVCH, 408.
  32. Girin, O. B. (2000). Phenomenon of Precipitation of Metal Being Electrodeposited, Occurring via Formation of an Undercooled Liquid Metal Phase and its Subsequent Solidification. Part 1. Experimental Detection and Theoretical Grounding. Materials Development and Processing. Weinheim, Germany : WILEY-VCH, 8, 183-188.
  33. Girin, O. B. (2000). Phenomenon of Precipitation of Metal Being Electrodeposited, Occurring via Formation of an Undercooled Liquid Metal Phase and its Subsequent Solidification. Part 2. Experimental Verification. Materials Development and Processing. Weinheim, Germany: WILEY-VCH, 8, 189-194.
  34. Girin, O. B. (2004). Phenomenon of Structure Formation of Metals being Electrodeposited via a Super-Cooled Metal Liquid, and its Use for the Development of Advanced Technologies of Depositing New Types of Protective Composite Coats on Canned Food Steel Sheet. Proc. of the 5th Int. Sci. Forum AFES. Paris, France: Int. Acad. of Engn, 142–147.
  35. Girin, O. B. (2007). Phase Transformations in the Metallic Materials being Electrodeposited and Their Application for the Development of Advanced Technologies for Anticorrosive Protection of Canned-Food Steel Sheet. Materials Science Forum, 561-565, 2369-2372.
  36. Girin, O. B. (2010). Phase and Structure Formation of Metallic Materials Electrodeposited via a Liquid State Stage: New Experimental Proof. Defect and Diffusion Forum, 303-304, 99-105.
  37. Girin, O. B. (2012). Phase Formation through a Stage of Liquid State in Metallic Materials being Electrodeposited: Recent Experimental Proofs. International Journal of Material Science, 2 (4), 108-118.
  38. Mikheeva, V. I. (1960). Hydrides of transitional metals. Moscow, USSR: Academy of Sciences of the USSR, 212.
  39. Gel’d, V. P., Ryabov, R. A. (1974). Hydrogen in metals and alloys. Moscow, USSR: Metallurgy, 272.
  40. Yampol’skii, A. M., Il’in, V. A. (1981). Brief electroplater’s handbook. Leningrad, USSR: Engineer, 269.

Published

2014-02-07

How to Cite

Гирин, О. Б., & Захаров, И. Д. (2014). Formation of chromium hydride in chromium being electrodeposited alloyed with hydrogen. Eastern-European Journal of Enterprise Technologies, 1(5(67), 41–44. https://doi.org/10.15587/1729-4061.2014.20190

Issue

Section

Applied physics