The study of a small circle loading on deformation characteristics of the sandwich plates

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.20191

Keywords:

laminated plates, fiber, cyclic loading, deformation, concrete, ferroconcrete, fiber ferroconcrete, method

Abstract

In this paper, available in a form considered current and future direction of building materials and structures are to match the new high current requirements laminated panels that provide significant cost steel. This paper presents the results of experimental studies of the impact small cyclic loads on deformation characteristics laminated plates. The author using the original methodology for determining deformations in load small cycling set the main deformation characteristics laminated plates. In the presented paper we compare the effects of stress on small cycling different models of stoves, compared the deformation behaviour of layered slabs of reinforced concrete selected for the comparative sample.

Experimental tests allowed to determine the maximum and residual deformations stretched layer steel fiber concrete, set the deformation characteristics laminated plates with steels fiber concrete, combined steels fiber ferroconcrete reinforced, double layer steels fiber ferroconcrete under small cyclic loads. The author has constructed a chart deformation stretched layer at small cyclic loads boards steels fiber ferroconcrete series and two-layer steels fiber ferroconcrete. The results of obtained the study revealed that a series of samples combined reinforced steels fiber ferroconcrete and double-layer steels fiber ferroconcrete much better perceive cyclic loading than the samples of ferroconcrete.

Author Biography

Іван Іванович Глагола, Self Employed Design and construction company "Єvrobud"

Chief engineer

References

  1. Васильев, В. В. Механика конструкций из композиционных материалов [Текст] / В. В. Васильев. − К.: Наукова думка, 1988. − 272 с.
  2. Harris, D. Flexural lateral load distribution characteristics of sandwich plate system bridges parametric investigation [Текст] / D. Harris, T. Cousins, E. Sotelino, T. Murray // J of Bridge Engineering. − 2010. − Т. 3(15). − P. 684-694.
  3. Горик, О. В. Теоретико-експериментальні дослідження згину тришарових брусів [Текст] / О. В. Горик, В. Г. Піскунов, В. М. Чередніков // Проблемы прочности. − 2000. − № 3 (345). − С. 76-85.
  4. Wadley, H. N. Fabrication and structural performance of periodic cellular metal sandwich structures [Текст] / H. N. Wadley, N. A. Fleck, A. G. Evans // Composite Science and Technology. − 2003. – Т. 63 (13). – P. 2331-2343.
  5. Valdevit, L. Structural performance of near-optimal sandwich panels with corrugated cores [Текст] / L. Valdevit, Z. Wei, C. Mercer, F. W. Zok // Evans International J of Solids and Structures. − 2006. – Т. 43 (16). – P. 4888-4905.
  6. Глагола, І. І. Порівняння характеру руйнування шаруватих сталефібробетонних плит [Текст] / І. І. Глагола // Містобудування та територіальне планування: Наук.-техн. зб. – К.: КНУБА. − 2010. − № 38. − С 114.
  7. Ahn, D. G. Failure characteristics of a thin metallic sandwich plate with metallic sheared dimple cores under low-velocity impact loading [Теxt] / D. G. Ahn, W. C. Jeong // J of Mechanical Science and Technology. New York: KSME аnd Springer. − 2013. – Т. 27 (10). – P. 2941-2946.
  8. Seong, D. Y. Efficient prediction of local failures for metallic sandwich plate with pyramidal truss cores during the bending process [Теxt] / D. Y. Seong, C. G. Jung, D. Y. Yang, W. J. Chung // International J of Precision Engineering and Manufacturing. − 2011. − Т 12 (3). – P. 491-503.
  9. Deshpande, V. S. Collapse of truss core sandwich beams in 3-point bending [Теxt] / V. S. Deshpande, N. A. Fleck // International J of Solids and Structures. − 2001. – Т. 38 (36 − 37). – P. 6275-6305.
  10. Pingle, S. M. Collapse mechanism maps for the hollow pyramidal core of a sandwich panel under transverse shear [Теxt] / S. M. Pingle, N. A. Fleck, V. S. Deshpande, H. N. Wadely // International J of Solids and Structures. – 2011. – Т. 48 (25-26). – P. 3417-3430.
  11. Vaziri, A. Performance and failure of metal sandwich plates subjected to shock loading [Теxt] / A. Vaziri, Z. Xue, J. W. Hutchinson // J of Mechanics of Materials and Structures. − 2007. – Т. 2 (10). – P. 1947-1963.
  12. Vasiljev, V. V. (1988). The mechanic of contractures made of composite materials. Kyiv, USSR: Scientific Thought, 272.
  13. Harris, D., Cousins, T., Sotelino, E., Murray, T. (2010). Flexural lateral load distribution characteristics of sandwich plate system bridges parametric investigation. J of Bridge Engineering, 3 (15), 684–694.
  14. Goryk, О. V., Piskunov, V. G., Therednikov, V. M. (2000). Theoretical and experimental study of the bending of sandwich beams. Problems of Strength, 3 (345), 76–85.
  15. Wadley, H. N., Fleck, N. A., Evans, A. G. (2003). Fabrication and structural performance of periodic cellular metal sandwich structures. Composite Science and Technology, 63 (13), 2331–2343.
  16. Valdevit, L., Wei, Z., Mercer, C., Zok, F. W. (2006). Structural performance of near–optimal sandwich panels with corrugated cores. Evans International J of Solids and Structures, 43 (16), 4888–4905.
  17. Glagola, I. I. (2010). The comparison of fracture of the laminated by fibre steel–concretes plates. Town planning and spatial planning, Kyiv, 38, 114.
  18. Ahn, D. G., Jeong, W. C. (2013). Failure characteristics of a thin metallic sandwich plate with metallic sheared dimple cores under low–velocity impact loading. J of Mechanical Science and Technology, 27 (10), 2941–2946.
  19. Seong, D. Y., Yang, D. Y., Chung, W. J. (2011). Efficient prediction of local failures for metallic sandwich plate with pyramidal truss cores during the bending process. International J of Precision Engineering and Manufacturing, 12 (3), 491–503.
  20. Deshpande, V. S., Fleck, N. A. (2001). Collapse of truss core sandwich beams in 3–point bending. International J of Solids and Structures, 38 (36−37), 6275–6305.
  21. Pingle, S. M., Fleck, N. A., Deshpande, V. S., Wadely, H. N. (2011). Collapse mechanism maps for the hollow pyramidal core of a sandwich panel under transverse shear. International J of Solids and Structures, 48 (25–26), 3417–3430.
  22. Vaziri, A., Xue, Z., Hutchinson, J. W. (2007). Performance and failure of metal sandwich plates subjected to shock loading. J of Mechanics of Materials and Structures, 2 (10), 1947–1963.

Published

2014-02-07

How to Cite

Глагола, І. І. (2014). The study of a small circle loading on deformation characteristics of the sandwich plates. Eastern-European Journal of Enterprise Technologies, 1(6(67), 37–40. https://doi.org/10.15587/1729-4061.2014.20191