Biotechnological aspects of obtaining fermented soybean products with increased phytoestrogenic activity

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.205753

Keywords:

fermentation, soy milk, Lactobacillus, Bifidobacterium, probiotics, oligosaccharides, isoflavones, α-galactosidase, β-glucosidase.

Abstract

We have studied the proteolytic, α-galactosidase, and β-glucosidase activities of the consortia Lactobacillus acidophilus 317/402 with Bifidobacterium longum-Ya3 and Вifidobacterium adolescentis-С52 in the process of soy milk fermentation. It has been established that the studied cultures possess active enzyme apparatuses and help minimize those factors that limit the use of soy milk for the production of functional foods ‒ the presence of indigestible oligosaccharides and a legume taste. In terms of the proteolytic activity, which was 30 mU in 6 hours, the consortium Lactobacillus acidophilus 317/402 with Bifidobacterium adolescentis-С52 was the leader. The largest α-galactosidase and β-glucosidase activities, 98 U/mg and 81 U/mg, respectively, were demonstrated by the consortium Lactobacillus acidophilus 317/402 with Bifidobacterium longum-Ya3. At the same time, the amount of daidzin, glycitin, and genistin decreased by 93 %, 75 %, and 99.6%, respectively, while the amount of relevant aglycones increased by 278 %, 153 %, and 338 %. The specified enzyme activities of Lactobacillus acidophilus 317/402 with Вifidobacterium adolescentis-С52 did not exceed 78 and 75 U/mg, respectively, while the biotransformation processes of isoflavones were less intensive. It has been shown that certain symbiotic relationships between the selected strains of Bifidobacterium and Lactobacillus acidophilus are formed in soybean milk, which makes it possible to obtain high titers of probiotic cultures in the finished product, with the predominance of Bifidobacterium. After 9 hours of fermentation, the average number of Bifidobacterium and lactobacillus cells for both consortia was (0.9–2)·108 CFU/cm3 and (0.8–4)·109 CFU/cm3, respectively. We have proven the increase in the probiotic and estrogenic activity of fermented drinks based on soy while reducing the amount of galactooligosaccharides by 50‒70 % on average.

Author Biographies

Leonid Kaprelyants, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Doctor of Technical Sciences, Professor, Head of Department

Department of Biochemistry, Microbiology and Physiology of Nutrition

Liudmyla Trufkati, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD, Associate Professor

Department of Biochemistry, Microbiology and Physiology of Nutrition

Liliia Pozhitkova, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD

Department of Biochemistry, Microbiology and Physiology of Nutrition

Tetiana Shpyrko, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD, Associate Professor

Department of Biochemistry, Microbiology and Physiology of Nutrition

Nataliya Shvets, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD

Department of Biochemistry, Microbiology and Physiology of Nutrition

References

  1. Kaprelyants, L., Yegorova, A., Trufkati, L., Pozhitkova, L. (2019). Functional foods: prospects in Ukraine. Food Science and Technology, 13 (2), 15–23. doi: https://doi.org/10.15673/fst.v13i2.1382
  2. Kaprelyants, L. (2016). Functional foods and nutraceuticals – modern approach to food science. Visnyk of the Lviv University. Series Biology, 73, 441–441. Available at: http://nbuv.gov.ua/UJRN/VLNU_biol_2016_73_122
  3. Bultosa, G. (2016). Functional Foods: Dietary Fibers, Prebiotics, Probiotics, and Synbiotics. Reference module in Food Science. Elsevier. doi: https://doi.org/10.1016/b978-0-08-100596-5.00245-6
  4. Mayorov, A. A., Mironenko, I. M., Ovsyankina, N. A., Belov, A. N., El'chaninov, V. V., Koval', A. D., Shchetinin, M. P. (2002). Perspektivy ispol'zovaniya soevyh komponentov. Molochnaya promyshlennost', 1, 55–57.
  5. Kumari, A., Angmo, K., Monika, S., Bhalla, T. C. (2018). Functional and technological application of probiotic L. casei PLA5 in fermented soymilk. International Food Research Journal, 25 (5), 2164–2172. Available at: http://www.ifrj.upm.edu.my/25%20(05)%202018/(54).pdf
  6. Khamagaeva, I. S., Boyarineva, I. V., Potapchuk, N. Y. (2013). The study of probiotic properties of combined starter. Tehnika i tehnologiya pishchevyh proizvodstv, 1 (28).
  7. Lourens-Hattingh, A., Viljoen, B. C. (2001). Yogurt as probiotic carrier food. International Dairy Journal, 11 (1-2), 1–17. doi: https://doi.org/10.1016/s0958-6946(01)00036-x
  8. Kim, Y., Yoon, S., Lee, S. B., Han, H. W., Oh, H., Lee, W. J., Lee, S.-M. (2014). Fermentation of Soy Milk via Lactobacillus plantarum Improves Dysregulated Lipid Metabolism in Rats on a High Cholesterol Diet. PLoS ONE, 9 (2), e88231. doi: https://doi.org/10.1371/journal.pone.0088231
  9. Panwar, H., Rashmi, H. M., Batish, V. K., Grover, S. (2013). Probiotics as potential biotherapeutics in the management of type 2 diabetes - prospects and perspectives. Diabetes/Metabolism Research and Reviews, 29 (2), 103–112. doi: https://doi.org/10.1002/dmrr.2376
  10. Božanić, R., Lovković, S., Jeličić, I. (2011). Optimising fermentation of soymilk with probiotic bacteria. Czech Journal of Food Sciences, 29 (1), 51–56. doi: https://doi.org/10.17221/97/2010-cjfs
  11. Zarour, K., Vieco, N., Pérez-Ramos, A., Nácher-Vázquez, M., Mohedano, M. L., López, P. (2017). Food Ingredients Synthesized by Lactic Acid Bacteria. Microbial Production of Food Ingredients and Additives, 89–124. doi: https://doi.org/10.1016/b978-0-12-811520-6.00004-0
  12. Telang, A. M., Joshi, V. S., Sutar, N., Thorat, B. N. (2010). Enhancement of Biological Properties of Soymilk by Fermentation. Food Biotechnology, 24 (4), 375–387. doi: https://doi.org/10.1080/08905436.2010.524489
  13. Niyibituronsa, M., Onyango, A. N., Gaidashova, S., Imathiu, S., Boevre, M. D., Leenknecht, D. et. al. (2019). The Growth of Different Probiotic Microorganisms in Soymilk from Different Soybean Varieties and their Effects on Anti-oxidant Activity and Oligosaccharide Content. Journal of Food Research, 8 (1), 41. doi: https://doi.org/10.5539/jfr.v8n1p41
  14. Myagmardorj, B., Purev, M.-E., Batdorj, B. (2018). Functional properties of fermented soymilk by Lactobacillus fermentum BM-325. Mongolian Journal of Chemistry, 19 (45), 32–37. doi: https://doi.org/10.5564/mjc.v19i45.1087
  15. Singh, B. P., Vij, S. (2018). α-Galactosidase activity and oligosaccharides reduction pattern of indigenous lactobacilli during fermentation of soy milk. Food Bioscience, 22, 32–37. doi: 10.1016/j.fbio.2018.01.002
  16. Goulas, T., Goulas, A., Tzortzis, G., Gibson, G. R. (2009). A novel α-galactosidase from Βifidobacterium bifidum with transgalactosylating properties: gene molecular cloning and heterologous expression. Applied Microbiology and Biotechnology, 82 (3), 471–477. doi: https://doi.org/10.1007/s00253-008-1750-5
  17. Battistini, C., Gullón, B., Ichimura, E. S., Gomes, A. M. P., Ribeiro, E. P., Kunigk, L. et. al. (2018). Development and characterization of an innovative synbiotic fermented beverage based on vegetable soybean. Brazilian Journal of Microbiology, 49 (2), 303–309. doi: https://doi.org/10.1016/j.bjm.2017.08.006
  18. Kobayashi, M., Shima, T., Fukuda, M. (2018). Metabolite Profile of Lactic Acid-Fermented Soymilk. Food and Nutrition Sciences, 09 (11), 1327–1340. doi: https://doi.org/10.4236/fns.2018.911095
  19. Havas, P., Kun, S., Perger-Mészáros, I., Nguyen, Q., Rezessy-Szabó, J. Role of the Bifidobacteria in Soymilk Fermentation. Available at: http://korny.uni-corvinus.hu/cneucoop_fullpapers/s3/petrahavas.pdf
  20. Kreijkamp-Kaspers, S., Kok, L., Grobbee, D. E., de Haan, E. H. F., Aleman, A., Lampe, J. W., van der Schouw, Y. T. (2004). Effect of soy protein containing isoflavones on cognitive function, bone mineral density, and plasma lipids in postmenopausal women: a randomized controlled trial. JAMA, 292 (1), 65–74. doi: https://doi.org/10.1001/jama.292.1.65
  21. Setchell, K. D. R., Brown, N. M., Desai, P. B., Zimmer-Nechimias, L., Wolfe, B., Jakate, A. S. et. al. (2003). Bioavailability, Disposition, and Dose-Response Effects of Soy Isoflavones When Consumed by Healthy Women at Physiologically Typical Dietary Intakes. The Journal of Nutrition, 133 (4), 1027–1035. doi: https://doi.org/10.1093/jn/133.4.1027
  22. Yatsu, F. K. J., Koester, L. S., Bassani, V. L. (2016). Isoflavone-aglycone fraction from Glycine max: a promising raw material for isoflavone-based pharmaceutical or nutraceutical products. Revista Brasileira de Farmacognosia, 26 (2), 259–267. doi: https://doi.org/10.1016/j.bjp.2015.12.004
  23. Horáčková, Š., Mühlhansová, A., Sluková, M., Schulzová, V., Plocková, M. (2016). Fermentation of soymilk by yoghurt and bifidobacteria strains. Czech Journal of Food Sciences, 33 (4), 313–319. doi: https://doi.org/10.17221/115/2015-cjfs
  24. You, H. J., Ahn, H. J., Kim, J. Y., Wu, Q. Q., Ji, G. E. (2015). High expression of β-glucosidase in Bifidobacterium bifidum BGN4 and application in conversion of isoflavone glucosides during fermentation of soy milk. Journal of Microbiology and Biotechnology, 25 (4), 469–478. doi: https://doi.org/10.4014/jmb.1408.08013
  25. Otieno, D. O., Ashton, J. F., Shah, N. P. (2006). Evaluation of enzymic potential for biotransformation of isoflavone phytoestrogen in soymilk by Bifidobacterium animalis, Lactobacillus acidophilus and Lactobacillus casei. Food Research International, 39 (4), 394–407. doi: https://doi.org/10.1016/j.foodres.2005.08.010
  26. Капрельянц, Л. В., Труфкаті, Л. В. (2006). Біотехнологія виробництва функціональних білкових продуктів. Збірник наукових праць ХДУХТ, 1 (3), 16–23.
  27. Sumarna (2008). Changes of raffinose and stachyose in soy milk fermentation by lactic acid bacteria from local fermented foods of Indonesian. Malaysian Journal of Microbiology, 4 (2), 26–34. doi: https://doi.org/10.21161/mjm.12208
  28. Scalabrini, P., Rossi, M., Spettoli, P., Matteuzzi, D. (1998). Characterization of Bifidobacterium strains for use in soymilk fermentation. International Journal of Food Microbiology, 39 (3), 213–219. doi: https://doi.org/10.1016/s0168-1605(98)00005-1
  29. Abdel-Rahman, M. A., Tashiro, Y., Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 31 (6), 877–902. doi: https://doi.org/10.1016/j.biotechadv.2013.04.002
  30. Donkor, O. N., Henriksson, A., Vasiljevic, T., Shah, N. P. (2007). Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. Le Lait, 87 (1), 21–38. doi: https://doi.org/10.1051/lait:2006023
  31. Nielsen, P. M., Petersen, D., Dambmann, C. (2001). Improved Method for Determining Food Protein Degree of Hydrolysis. Journal of Food Science, 66 (5), 642–646. doi: https://doi.org/10.1111/j.1365-2621.2001.tb04614.x
  32. Chun, J., Jeong, W. J., Kim, J. S., Lim, J., Park, C. S., Kwon, D. Y. et. al. (2008). Hydrolysis of isoflavone glucosides in soymilk fermented with single or mixed cultures of Lactobacillus paraplantarum KM, Weissella sp. 33, and Enterococcus faecium 35 isolated from humans. Journal of microbiology and biotechnology, 18 (3), 573–578.
  33. Chun, J., Kim, G. M., Lee, K. W., Choi, I. D., Kwon, G.-H., Park, J.-Y. et. al. (2007). Conversion of Isoflavone Glucosides to Aglycones in Soymilk by Fermentation with Lactic Acid Bacteria. Journal of Food Science, 72 (2), M39–M44. doi: https://doi.org/10.1111/j.1750-3841.2007.00276.x
  34. Holzapfel, W. H., Haberer, P., Geisen, R., Björkroth, J., Schillinger, U. (2001). Taxonomy and important features of probiotic microorganisms in food and nutrition. The American Journal of Clinical Nutrition, 73 (2), 365s–373s. doi: https://doi.org/10.1093/ajcn/73.2.365s
  35. Savijoki, K., Ingmer, H., Varmanen, P. (2006). Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology, 71 (4), 394–406. doi: https://doi.org/10.1007/s00253-006-0427-1
  36. Poch, M., Bezkorovainy, A. (1988). Growth-Enhancing Supplements for Various Species of the Genus Bifidobacterium. Journal of Dairy Science, 71 (12), 3214–3221. doi: https://doi.org/10.3168/jds.s0022-0302(88)79926-9
  37. Belkaaloul, K., Chekroun, A., Ait-Abdessalam, A., Saidi, D., Kheroua, O. (2010). Growth, acidification and proteolysis performance of two co-cultures (Lactobacillus plantarum-Bifidobacterium longum and Streptococcus thermophilus-Bifidobacterium longum). African Journal of Biotechnology, 9 (10), 1463–1469. doi: https://doi.org/10.5897/ajb09.1090
  38. Uzzan, M., Abuza, T. P. L. (2006). Critical Issues in R&D of Soy Isoflavone-enriched Foods and Dietary Supplements. Journal of Food Science, 69 (3), CRH77–CRH86. doi: https://doi.org/10.1111/j.1365-2621.2004.tb13345.x
  39. King, R. A., Bignell, C. M. (2000). Concentrations of isoflavone phytoestrogens and their glucosides in Australian soya beans and soya foods. Australian Journal of Nutrition and Dietetics, 57 (2), 70–78.
  40. Tsangalis, D., Ashton, J. F., Mcgill, A. E. J., Shah, N. P. (2002). Enzymic Transformation of Isoflavone Phytoestrogens in Soymilk by β-Glucosidase-Producing Bifidobacteria. Journal of Food Science, 67 (8), 3104–3113. doi: https://doi.org/10.1111/j.1365-2621.2002.tb08866.x
  41. Setchell, K. D. R., Brown, N. M., Desai, P., Zimmer-Nechemias, L., Wolfe, B. E., Brashear, W. T. et. al. (2001). Bioavailability of Pure Isoflavones in Healthy Humans and Analysis of Commercial Soy Isoflavone Supplements. The Journal of Nutrition, 131 (4), 1362S–1375S. doi: https://doi.org/10.1093/jn/131.4.1362s
  42. Setchell, K. D. R. (2000). Absorption and Metabolism of Soy Isoflavones – from Food to Dietary Supplements and Adults to Infants. The Journal of Nutrition, 130(3), 654S–655S. doi: https://doi.org/10.1093/jn/130.3.654s
  43. Leroy, F., De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology, 15 (2), 67–78. doi: https://doi.org/10.1016/j.tifs.2003.09.004
  44. Barrangou, R., Azcarate-Peril, M. A., Duong, T., Conners, S. B., Kelly, R. M., Klaenhammer, T. R. (2006). Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proceedings of the National Academy of Sciences, 103 (10), 3816–3821. doi: https://doi.org/10.1073/pnas.0511287103

Downloads

Published

2020-06-30

How to Cite

Kaprelyants, L., Trufkati, L., Pozhitkova, L., Shpyrko, T., & Shvets, N. (2020). Biotechnological aspects of obtaining fermented soybean products with increased phytoestrogenic activity. Eastern-European Journal of Enterprise Technologies, 3(11 (105), 77–88. https://doi.org/10.15587/1729-4061.2020.205753

Issue

Section

Technology and Equipment of Food Production