Analysis of technological approaches to electrochemical surface treatment of aluminum alloys
DOI:
https://doi.org/10.15587/1729-4061.2020.206014Keywords:
surface modification, surface forming, surface homogenization, process modeling, oxide coatingAbstract
Technological approaches to surface electrochemical treatment of aluminum alloys are analyzed. It is shown that directed modification of the carrier surface allows expanding the functional properties of the treated material. The mechanisms of treatment of aluminum alloys of different composition are investigated and technological models of processes using generalized phenomenological schemes are developed. Methods surface forming treatment of aluminum alloys by pulse current forming in chloride-containing electrolytes and plasma electrolytic oxidation in alkaline solutions of diphosphates are proposed. It is shown that the use of pulse electrolysis promotes the formation of a developed mesh and porous structure. Control methods and factors of the treatment process are generalized. The resulting systems can be used as carriers of catalytic material provided that a secondary catalytically active layer is applied. It is found that using plasma electrolytic oxidation, it is possible to change the shape and homogenize the surface layers of the carrier and apply a tightly adhered layer of catalytic material in one technological process. It is shown that the characteristic parameters of PEO depend on the composition of the treated material. It is revealed that the morphology and phase structure of surface oxide layers change during PEO. The formed oxide coatings consist of α-Al2O3 and have a high degree of surface development, which is a prerequisite for increasing their functional properties. The proposed approach can be used in surface engineering technology and for obtaining materials for environmentally friendly technologiesReferences
- Fridlyander, I. N., Sister, V. G., Grushko, O. E., Berstenev, V. V., Sheveleva, L. M., Ivanova, L. A. (2002). Aluminum Alloys: Promising Materials in the Automotive Industry. Metal Science and Heat Treatment, 44, 365–370. doi: http://doi.org/10.1023/A:1021901715578
- Tisza, M., Lukács, Z. (2018). High strength aluminum alloys in car manufacturing. IOP Conference Series: Materials Science and Engineering, 418, 012033. doi: https://doi.org/10.1088/1757-899x/418/1/012033
- Kermanidis, A. T. (2020). Aircraft Aluminum Alloys: Applications and Future Trends. Revolutionizing Aircraft Materials and Processes, 21–55. doi: https://doi.org/10.1007/978-3-030-35346-9_2
- Bohuslaiev, V. O. (2009). Aviatsiyno-kosmichni materialy ta tekhnolohiyi. Zaporizhzhia: Motor Sich, 383.
- Dokšanović, T., Džeba, I., Markulak, D. (2017). Applications of aluminium alloys in civil engineering. Tehnički vjesnik, 24 (5), 1609–1618. doi: https://doi.org/10.17559/tv-20151213105944
- Parsadanov, I. V., Sakhnenko, N. D., Ved’, M. V., Rykova, I. V., Khyzhniak, V. O., Karakurkchi, A. V., Gorokhivskiy, A. S. (2017). Increasing the efficiency of intra-cylinder catalysis in diesel engines. Voprosy himii i himicheskoy tehnologii, 6, 145–151.
- Santina Mohallem, N. D., Machado, M., Silva, A. R. (2011). Automotive Catalysts: Performance, Characterization and Development. New Trends and Developments in Automotive Industry, 347–364. doi: https://doi.org/10.5772/13303
- Zolotorevsky, V. S., Belov, N. A., Glazoff, M. V. (2007). Casting Aluminum Alloys. Elsevier, 544. doi: https://doi.org/10.1016/b978-0-08-045370-5.x5001-9
- Zolotorevskiy, V. S., Belov, N. A. (2005). Metallovedenie liteynyh alyuminievyh splavov. Moscow: MISiS, 376.
- Terryn, H., Vereecken, J. (1991). Surface engineering of aluminium and its alloys. EMC ’91: Non-Ferrous Metallurgy – Present and Future, 473–480. doi: https://doi.org/10.1007/978-94-011-3684-6_51
- Karakurkchi, A. V., Ved’, M. V., Yermolenko, I. Y., Sakhnenko, N. D. (2016). Electrochemical deposition of Fe–Mo–W alloy coatings from citrate electrolyte. Surface Engineering and Applied Electrochemistry, 52 (1), 43–49. doi: https://doi.org/10.3103/s1068375516010087
- Ved’, M. V., Sakhnenko, M. D., Karakurkchi, H. V., Ermolenko, I. Y., Fomina, L. P. (2016). Functional Properties of Fe−Mo and Fe−Mo−W Galvanic Alloys. Materials Science, 51 (5), 701–710. doi: https://doi.org/10.1007/s11003-016-9893-5
- Rudnev, V. S., Lukiyanchuk, I. V., Vasilyeva, M. S., Medkov, M. A., Adigamova, M. V., Sergienko, V. I. (2016). Aluminum- and titanium-supported plasma electrolytic multicomponent coatings with magnetic, catalytic, biocide or biocompatible properties. Surface and Coatings Technology, 307, 1219–1235. doi: https://doi.org/10.1016/j.surfcoat.2016.07.060
- Ved, M., Glushkova, M., Sakhnenko, N. (2013). Catalytic properties of binary and ternary alloys based on silver. Functional Materials, 20 (1), 87–91. doi: https://doi.org/10.15407/fm20.01.087
- Zhou, C., Tao, L., Yang, F., Wang, B., Wan, X., Jin, Y. et. al. (2019). Application of electrochemical methods in heterogeneous catalysis. Current Opinion in Chemical Engineering, 26, 88–95. doi: https://doi.org/10.1016/j.coche.2019.09.007
- Kim, H.-H., Teramoto, Y., Ogata, A., Takagi, H., Nanba, T. (2015). Plasma Catalysis for Environmental Treatment and Energy Applications. Plasma Chemistry and Plasma Processing, 36 (1), 45–72. doi: https://doi.org/10.1007/s11090-015-9652-7
- Schwarz, J. A., Contescu, C., Contescu, A. (1995). Methods for Preparation of Catalytic Materials. Chemical Reviews, 95 (3), 477–510. doi: https://doi.org/10.1021/cr00035a002
- Karakurkchi, A., Sakhnenko, M., Ved, M., Galak, A., Petrukhin, S. (2017). Application of oxide-metallic catalysts on valve metals for ecological catalysis. Eastern-European Journal of Enterprise Technologies, 5 (10 (89)), 12–18. doi: https://doi.org/10.15587/1729-4061.2017.109885
- Lukiyanchuk, I. V., Rudnev, V. S., Tyrina, L. M., Chernykh, I. V. (2014). Plasma electrolytic oxide coatings on valve metals and their activity in CO oxidation. Applied Surface Science, 315, 481–489. doi: https://doi.org/10.1016/j.apsusc.2014.03.040
- Burange, A. S., Gawande, M. B. (2016). Role of Mixed Metal Oxides in Heterogeneous Catalysis. Encyclopedia of Inorganic and Bioinorganic Chemistry, 1–19. doi: https://doi.org/10.1002/9781119951438.eibc2458
- Poncelet, G., Jacobs, P., Grange, P., Delmon, B. (1991). Studies in Surface Preparation of Catalysts V. Scientific Bases for the Preparation of Heterogeneous Catalysts. Elsevier, 747.
- Hartmann, S., Sachse, A., Galarneau, A. (2012). Challenges and Strategies in the Synthesis of Mesoporous Alumina Powders and Hierarchical Alumina Monoliths. Materials, 5 (12), 336–349. doi: https://doi.org/10.3390/ma5020336
- Md Jani, A. M., Losic, D., Voelcker, N. H. (2013). Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Progress in Materials Science, 58 (5), 636–704. doi: https://doi.org/10.1016/j.pmatsci.2013.01.002
- Sulka, G. (Ed.) (2020). Nanostructured Anodic Metal Oxides. Elsevier, 484. doi: https://doi.org/10.1016/c2017-0-04824-3
- Kirienko, P. I., Popovich, N. A., Solov'ev, S. A., Knyazev, Yu. V., Slipets, O. O., Solov'eva, E. A. (2010). Development of multicomponent metal-oxide of catalysts of neutralization of internal combustion engine exhausts. Eastern-European Journal of Enterprise Technologies, 2 (6 (44)), 18–24. Available at: http://journals.uran.ua/eejet/article/view/2679/2485
- Lukiyanchuk, I. V., Rudnev, V. S., Chernykh, I. V., Malyshev, I. V., Tyrina, L. M., Adigamova, M. V. (2013). Composites with transition metal oxides on aluminum and titanium and their activity in CO oxidation. Surface and Coatings Technology, 231, 433–438. doi: https://doi.org/10.1016/j.surfcoat.2012.10.031
- Ved’, M. V., Sakhnenko, M. D., Bohoyavlens’ka, O. V., Nenastina, T. O. (2008). Modeling of the surface treatment of passive metals. Materials Science, 44 (1), 79–86. doi: https://doi.org/10.1007/s11003-008-9046-6
- Sakhnenko, N. D., Ved’, M. V., Karakurkchi, A. V. (2017). Morphology and Properties of Coatings Obtained by Plasma-Electrolytic Oxidation of Titanium Alloys in Pyrophosphate Electrolytes. Protection of Metals and Physical Chemistry of Surfaces, 53 (6), 1082–1090. doi: https://doi.org/10.1134/s207020511706020x
- Rudnev, V. S., Vasilyeva, M. S., Kondrikov, N. B., Tyrina, L. M. (2005). Plasma-electrolytic formation, composition and catalytic activity of manganese oxide containing structures on titanium. Applied Surface Science, 252 (5), 1211–1220. doi: https://doi.org/10.1016/j.apsusc.2004.12.054
- Bozon-Verduraz, F., Fiévet, F., Piquemal, J.-Y., Brayner, R., El Kabouss, K., Soumare, Y. et. al. (2009). Nanoparticles of metal and metal oxides: some peculiar synthesis methods, size and shape control, application to catalysts preparation. Brazilian Journal of Physics, 39 (1a), 134–140. doi: https://doi.org/10.1590/s0103-97332009000200002
- Karakurkchi, A., Sakhnenko, M., Ved’, M., Yermolenko, I., Pavlenko, S., Yevsieiev, V. et. al. (2019). Determining features of application of functional electrochemical coatings in technologies of surface treatment. Eastern-European Journal of Enterprise Technologies, 3 (12 (99)), 29–38. doi: https://doi.org/10.15587/1729-4061.2019.171787
- Danilov, F. I., Protsenko, V. S., Butyrina, T. E., Krasinskii, V. A., Baskevich, A. S., Kwon, S. C., Lee, J. Y. (2011). Electrodeposition of nanocrystalline chromium coatings from Cr(III)-based electrolyte using pulsed current. Protection of Metals and Physical Chemistry of Surfaces, 47 (5), 598–605. doi: https://doi.org/10.1134/s2070205111050066
- Taylor, E. J. (2008). Adventures in pulse/pulse reverse electrolytic processes: Explorations and applications in surface finishing. Journal of Applied Surface Finishing, 3 (4), 178–189.
- Lebukhova, N. V., Rudnev, V. S., Kirichenko, E. A., Chigrin, P. G., Lukiyanchuk, I. V., Yarovaya, T. P. (2016). Effect of the structure of the oxidized titanium surface on the particle size and properties of the deposited copper–molybdate catalyst. Protection of Metals and Physical Chemistry of Surfaces, 52 (6), 1024–1030. doi: https://doi.org/10.1134/s2070205116060149
- Kokatev, A. N., Lukiyanchuk, I. V., Yakovleva, N. M., Rudnev, V. S., Chupakhina, E. A., Yakovlev, A. N., Stepanova, K. V. (2016). Catalytically active composite materials with porous aluminum oxide matrix modified by γ-MnO2 nanoparticles. Protection of Metals and Physical Chemistry of Surfaces, 52 (5), 832–838. doi: https://doi.org/10.1134/s2070205116050130
- Ved, M. V., Sakhnenko, N. D., Karakurkchi, A. V., Myrna, T. Yu. (2017). Functional mixed cobalt and aluminum oxide coatings for environmental safety. Functional Materials, 24 (2), 303–310. doi: https://doi.org/10.15407/fm24.02.303
- Rudnev, V. S., Gordienko, P. S., Kurnosova, A. G., Orlova, T. I. (1990). Kinetics of the galvanostatic formation of spark-discharge films on aluminum-alloys. Soviet Electrochemistry, 26 (7), 756–762.
- Xue, W., Deng, Z., Chen, R., Zhang, T. (2000). Growth regularity of ceramic coatings formed by microarc oxidation on Al–Cu–Mg alloy. Thin Solid Films, 372 (1-2), 114–117. doi: https://doi.org/10.1016/s0040-6090(00)01026-9
- Egorkin, V. S., Vyaliy, I. E., Sinebryukhov, S. L., Gnedenkov, S. V. (2017). Composition, morphology and tribological properties of PEO-coatings formed on an aluminum alloy D16 at different duty cycles of the polarizing signal. Non-Ferrous Metals, 42 (1), 12–16. doi: https://doi.org/10.17580/nfm.2017.01.03
- Krishna, L. R., Purnima, A. S., Wasekar, N. P., Sundararajan, G. (2007). Kinetics and Properties of Micro Arc Oxidation Coatings Deposited on Commercial Al Alloys. Metallurgical and Materials Transactions A, 38 (2), 370–378. doi: https://doi.org/10.1007/s11661-006-9054-9
- Zhu, L., Guo, Z., Zhang, Y., Li, Z., Sui, M. (2016). A mechanism for the growth of a plasma electrolytic oxide coating on Al. Electrochimica Acta, 208, 296–303. doi: https://doi.org/10.1016/j.electacta.2016.04.186
- Karakurkchi, A. V., Sakhnenko, N. D., Ved’, M. V., Mayba, M. V. (2019). Nanostructured Mixed Oxide Coatings on Silumin Incorporated by Cobalt. Nanocomposites, Nanostructures, and Their Applications, 269–291. doi: https://doi.org/10.1007/978-3-030-17759-1_19
- Chen, X., Fan, Y. (2020). Study on Preparation, Microstructure and Properties of Micro-Arc Oxidation Ceramic Coating on AZ91 Magnesium Alloy in Phosphate Electrolyte. IOP Conference Series: Materials Science and Engineering, 730, 012029. doi: https://doi.org/10.1088/1757-899x/730/1/012029
- Hryniewicz, T. (2018). Plasma Electrolytic Oxidation of Metals and Alloys. Metals, 8 (12), 1058. doi: https://doi.org/10.3390/met8121058
- Parsadanov, I. V., Sakhnenko, M. D., Khyzhniak, V. O., Karakyrchi, G. V. (2016). Improving the environmental performance of engines by intra-cylinder neutralization of toxic exhaust gases. Internal Combustion Engines, 2, 63–67. doi: https://doi.org/10.20998/0419-8719.2016.2.12
- Yermolenko, I. Yu., Ved, M. V., Karakurkchi, A. V., Sakhnenko, N. D., Kolupayeva, Z. I. (2017). The electrochemical behavior of Fe³⁺ – WO₄²⁻ – Cit³⁻ and Fe³⁺ – MoO₄²⁻ – WO₄²⁻ – Cit³ systems. Voprosy himii i himicheskoy tehnologii, 2, 4–14.
- Walsh, F. C., Low, C. T. J., Wood, R. J. K., Stevens, K. T., Archer, J., Poeton, A. R., Ryder, A. (2009). Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys. Transactions of the IMF, 87 (3), 122–135. doi: https://doi.org/10.1179/174591908x372482
- Kasalica, B., Petković-Benazzouz, M., Sarvan, M., Belča, I., Maksimović, B., Misailović, B., Popović, Z. (2020). Mechanisms of plasma electrolytic oxidation of aluminum at the multi-hour timescales. Surface and Coatings Technology, 390, 125681. doi: https://doi.org/10.1016/j.surfcoat.2020.125681
- Girase, K., Wang, Z., Kamimoto, T., Deguchi, Y., Jeon, M., Cui, M., Huang, E. (2020). Current density effects on plasma emission during plasma electrolytic oxidation (PEO) on AZ91D-magnesium alloy. Modern Physics Letters B, 34 (07n09), 2040025. doi: https://doi.org/10.1142/s0217984920400254
- Karakurkchi, A. V., Sakhnenko, N. D., Ved’, M. V., Luhovskyi, I. S., Drobakha, H. A., Mayba, M. V. (2019). Features of Plasma Electrolytic Formation of Manganese- and Cobalt-Containing Composites on Aluminum Alloys. Advances in Materials Science and Engineering, 2019, 1–13. doi: https://doi.org/10.1155/2019/6381291
- Sakhnenko, M., Karakurkchi, A., Galak, A., Menshov, S., Matykin, O. (2017). Examining the formation and properties of TiO2 oxide coatings with metals of iron triad. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 4–10. doi: https://doi.org/10.15587/1729-4061.2017.97550
- Sakhnenko, N. D., Ved, M. V., Karakurkchi, A. V. (2017). Nanoscale Oxide PEO Coatings Forming from Diphosphate Electrolytes. Nanophysics, Nanomaterials, Interface Studies, and Applications, 507–531. doi: https://doi.org/10.1007/978-3-319-56422-7_38
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Ann Karakurkchi, Mykola Sakhnenko, Maryna Ved’, Mykhailo Tulenko, Anatolii Dzheniuk
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.