Analysis of technological approaches to electrochemical surface treatment of aluminum alloys

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.206014

Keywords:

surface modification, surface forming, surface homogenization, process modeling, oxide coating

Abstract

Technological approaches to surface electrochemical treatment of aluminum alloys are analyzed. It is shown that directed modification of the carrier surface allows expanding the functional properties of the treated material. The mechanisms of treatment of aluminum alloys of different composition are investigated and technological models of processes using generalized phenomenological schemes are developed. Methods surface forming treatment of aluminum alloys by pulse current forming in chloride-containing electrolytes and plasma electrolytic oxidation in alkaline solutions of diphosphates are proposed. It is shown that the use of pulse electrolysis promotes the formation of a developed mesh and porous structure. Control methods and factors of the treatment process are generalized. The resulting systems can be used as carriers of catalytic material provided that a secondary catalytically active layer is applied. It is found that using plasma electrolytic oxidation, it is possible to change the shape and homogenize the surface layers of the carrier and apply a tightly adhered layer of catalytic material in one technological process. It is shown that the characteristic parameters of PEO depend on the composition of the treated material. It is revealed that the morphology and phase structure of surface oxide layers change during PEO. The formed oxide coatings consist of α-Al2O3 and have a high degree of surface development, which is a prerequisite for increasing their functional properties. The proposed approach can be used in surface engineering technology and for obtaining materials for environmentally friendly technologies

Author Biographies

Ann Karakurkchi, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Researcher

Department of Physical Chemistry

Mykola Sakhnenko, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Physical Chemistry

Maryna Ved’, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of General and Inorganic Chemistry

Mykhailo Tulenko, Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

Lecturer

Department of Tactics and Combined Arms Disciplines

Anatolii Dzheniuk, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Associate Professor

Department of Physical Chemistry

References

  1. Fridlyander, I. N., Sister, V. G., Grushko, O. E., Berstenev, V. V., Sheveleva, L. M., Ivanova, L. A. (2002). Aluminum Alloys: Promising Materials in the Automotive Industry. Metal Science and Heat Treatment, 44, 365–370. doi: http://doi.org/10.1023/A:1021901715578
  2. Tisza, M., Lukács, Z. (2018). High strength aluminum alloys in car manufacturing. IOP Conference Series: Materials Science and Engineering, 418, 012033. doi: https://doi.org/10.1088/1757-899x/418/1/012033
  3. Kermanidis, A. T. (2020). Aircraft Aluminum Alloys: Applications and Future Trends. Revolutionizing Aircraft Materials and Processes, 21–55. doi: https://doi.org/10.1007/978-3-030-35346-9_2
  4. Bohuslaiev, V. O. (2009). Aviatsiyno-kosmichni materialy ta tekhnolohiyi. Zaporizhzhia: Motor Sich, 383.
  5. Dokšanović, T., Džeba, I., Markulak, D. (2017). Applications of aluminium alloys in civil engineering. Tehnički vjesnik, 24 (5), 1609–1618. doi: https://doi.org/10.17559/tv-20151213105944
  6. Parsadanov, I. V., Sakhnenko, N. D., Ved’, M. V., Rykova, I. V., Khyzhniak, V. O., Karakurkchi, A. V., Gorokhivskiy, A. S. (2017). Increasing the efficiency of intra-cylinder catalysis in diesel engines. Voprosy himii i himicheskoy tehnologii, 6, 145–151.
  7. Santina Mohallem, N. D., Machado, M., Silva, A. R. (2011). Automotive Catalysts: Performance, Characterization and Development. New Trends and Developments in Automotive Industry, 347–364. doi: https://doi.org/10.5772/13303
  8. Zolotorevsky, V. S., Belov, N. A., Glazoff, M. V. (2007). Casting Aluminum Alloys. Elsevier, 544. doi: https://doi.org/10.1016/b978-0-08-045370-5.x5001-9
  9. Zolotorevskiy, V. S., Belov, N. A. (2005). Metallovedenie liteynyh alyuminievyh splavov. Moscow: MISiS, 376.
  10. Terryn, H., Vereecken, J. (1991). Surface engineering of aluminium and its alloys. EMC ’91: Non-Ferrous Metallurgy – Present and Future, 473–480. doi: https://doi.org/10.1007/978-94-011-3684-6_51
  11. Karakurkchi, A. V., Ved’, M. V., Yermolenko, I. Y., Sakhnenko, N. D. (2016). Electrochemical deposition of Fe–Mo–W alloy coatings from citrate electrolyte. Surface Engineering and Applied Electrochemistry, 52 (1), 43–49. doi: https://doi.org/10.3103/s1068375516010087
  12. Ved’, M. V., Sakhnenko, M. D., Karakurkchi, H. V., Ermolenko, I. Y., Fomina, L. P. (2016). Functional Properties of Fe−Mo and Fe−Mo−W Galvanic Alloys. Materials Science, 51 (5), 701–710. doi: https://doi.org/10.1007/s11003-016-9893-5
  13. Rudnev, V. S., Lukiyanchuk, I. V., Vasilyeva, M. S., Medkov, M. A., Adigamova, M. V., Sergienko, V. I. (2016). Aluminum- and titanium-supported plasma electrolytic multicomponent coatings with magnetic, catalytic, biocide or biocompatible properties. Surface and Coatings Technology, 307, 1219–1235. doi: https://doi.org/10.1016/j.surfcoat.2016.07.060
  14. Ved, M., Glushkova, M., Sakhnenko, N. (2013). Catalytic properties of binary and ternary alloys based on silver. Functional Materials, 20 (1), 87–91. doi: https://doi.org/10.15407/fm20.01.087
  15. Zhou, C., Tao, L., Yang, F., Wang, B., Wan, X., Jin, Y. et. al. (2019). Application of electrochemical methods in heterogeneous catalysis. Current Opinion in Chemical Engineering, 26, 88–95. doi: https://doi.org/10.1016/j.coche.2019.09.007
  16. Kim, H.-H., Teramoto, Y., Ogata, A., Takagi, H., Nanba, T. (2015). Plasma Catalysis for Environmental Treatment and Energy Applications. Plasma Chemistry and Plasma Processing, 36 (1), 45–72. doi: https://doi.org/10.1007/s11090-015-9652-7
  17. Schwarz, J. A., Contescu, C., Contescu, A. (1995). Methods for Preparation of Catalytic Materials. Chemical Reviews, 95 (3), 477–510. doi: https://doi.org/10.1021/cr00035a002
  18. Karakurkchi, A., Sakhnenko, M., Ved, M., Galak, A., Petrukhin, S. (2017). Application of oxide-metallic catalysts on valve metals for ecological catalysis. Eastern-European Journal of Enterprise Technologies, 5 (10 (89)), 12–18. doi: https://doi.org/10.15587/1729-4061.2017.109885
  19. Lukiyanchuk, I. V., Rudnev, V. S., Tyrina, L. M., Chernykh, I. V. (2014). Plasma electrolytic oxide coatings on valve metals and their activity in CO oxidation. Applied Surface Science, 315, 481–489. doi: https://doi.org/10.1016/j.apsusc.2014.03.040
  20. Burange, A. S., Gawande, M. B. (2016). Role of Mixed Metal Oxides in Heterogeneous Catalysis. Encyclopedia of Inorganic and Bioinorganic Chemistry, 1–19. doi: https://doi.org/10.1002/9781119951438.eibc2458
  21. Poncelet, G., Jacobs, P., Grange, P., Delmon, B. (1991). Studies in Surface Preparation of Catalysts V. Scientific Bases for the Preparation of Heterogeneous Catalysts. Elsevier, 747.
  22. Hartmann, S., Sachse, A., Galarneau, A. (2012). Challenges and Strategies in the Synthesis of Mesoporous Alumina Powders and Hierarchical Alumina Monoliths. Materials, 5 (12), 336–349. doi: https://doi.org/10.3390/ma5020336
  23. Md Jani, A. M., Losic, D., Voelcker, N. H. (2013). Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Progress in Materials Science, 58 (5), 636–704. doi: https://doi.org/10.1016/j.pmatsci.2013.01.002
  24. Sulka, G. (Ed.) (2020). Nanostructured Anodic Metal Oxides. Elsevier, 484. doi: https://doi.org/10.1016/c2017-0-04824-3
  25. Kirienko, P. I., Popovich, N. A., Solov'ev, S. A., Knyazev, Yu. V., Slipets, O. O., Solov'eva, E. A. (2010). Development of multicomponent metal-oxide of catalysts of neutralization of internal combustion engine exhausts. Eastern-European Journal of Enterprise Technologies, 2 (6 (44)), 18–24. Available at: http://journals.uran.ua/eejet/article/view/2679/2485
  26. Lukiyanchuk, I. V., Rudnev, V. S., Chernykh, I. V., Malyshev, I. V., Tyrina, L. M., Adigamova, M. V. (2013). Composites with transition metal oxides on aluminum and titanium and their activity in CO oxidation. Surface and Coatings Technology, 231, 433–438. doi: https://doi.org/10.1016/j.surfcoat.2012.10.031
  27. Ved’, M. V., Sakhnenko, M. D., Bohoyavlens’ka, O. V., Nenastina, T. O. (2008). Modeling of the surface treatment of passive metals. Materials Science, 44 (1), 79–86. doi: https://doi.org/10.1007/s11003-008-9046-6
  28. Sakhnenko, N. D., Ved’, M. V., Karakurkchi, A. V. (2017). Morphology and Properties of Coatings Obtained by Plasma-Electrolytic Oxidation of Titanium Alloys in Pyrophosphate Electrolytes. Protection of Metals and Physical Chemistry of Surfaces, 53 (6), 1082–1090. doi: https://doi.org/10.1134/s207020511706020x
  29. Rudnev, V. S., Vasilyeva, M. S., Kondrikov, N. B., Tyrina, L. M. (2005). Plasma-electrolytic formation, composition and catalytic activity of manganese oxide containing structures on titanium. Applied Surface Science, 252 (5), 1211–1220. doi: https://doi.org/10.1016/j.apsusc.2004.12.054
  30. Bozon-Verduraz, F., Fiévet, F., Piquemal, J.-Y., Brayner, R., El Kabouss, K., Soumare, Y. et. al. (2009). Nanoparticles of metal and metal oxides: some peculiar synthesis methods, size and shape control, application to catalysts preparation. Brazilian Journal of Physics, 39 (1a), 134–140. doi: https://doi.org/10.1590/s0103-97332009000200002
  31. Karakurkchi, A., Sakhnenko, M., Ved’, M., Yermolenko, I., Pavlenko, S., Yevsieiev, V. et. al. (2019). Determining features of application of functional electrochemical coatings in technologies of surface treatment. Eastern-European Journal of Enterprise Technologies, 3 (12 (99)), 29–38. doi: https://doi.org/10.15587/1729-4061.2019.171787
  32. Danilov, F. I., Protsenko, V. S., Butyrina, T. E., Krasinskii, V. A., Baskevich, A. S., Kwon, S. C., Lee, J. Y. (2011). Electrodeposition of nanocrystalline chromium coatings from Cr(III)-based electrolyte using pulsed current. Protection of Metals and Physical Chemistry of Surfaces, 47 (5), 598–605. doi: https://doi.org/10.1134/s2070205111050066
  33. Taylor, E. J. (2008). Adventures in pulse/pulse reverse electrolytic processes: Explorations and applications in surface finishing. Journal of Applied Surface Finishing, 3 (4), 178–189.
  34. Lebukhova, N. V., Rudnev, V. S., Kirichenko, E. A., Chigrin, P. G., Lukiyanchuk, I. V., Yarovaya, T. P. (2016). Effect of the structure of the oxidized titanium surface on the particle size and properties of the deposited copper–molybdate catalyst. Protection of Metals and Physical Chemistry of Surfaces, 52 (6), 1024–1030. doi: https://doi.org/10.1134/s2070205116060149
  35. Kokatev, A. N., Lukiyanchuk, I. V., Yakovleva, N. M., Rudnev, V. S., Chupakhina, E. A., Yakovlev, A. N., Stepanova, K. V. (2016). Catalytically active composite materials with porous aluminum oxide matrix modified by γ-MnO2 nanoparticles. Protection of Metals and Physical Chemistry of Surfaces, 52 (5), 832–838. doi: https://doi.org/10.1134/s2070205116050130
  36. Ved, M. V., Sakhnenko, N. D., Karakurkchi, A. V., Myrna, T. Yu. (2017). Functional mixed cobalt and aluminum oxide coatings for environmental safety. Functional Materials, 24 (2), 303–310. doi: https://doi.org/10.15407/fm24.02.303
  37. Rudnev, V. S., Gordienko, P. S., Kurnosova, A. G., Orlova, T. I. (1990). Kinetics of the galvanostatic formation of spark-discharge films on aluminum-alloys. Soviet Electrochemistry, 26 (7), 756–762.
  38. Xue, W., Deng, Z., Chen, R., Zhang, T. (2000). Growth regularity of ceramic coatings formed by microarc oxidation on Al–Cu–Mg alloy. Thin Solid Films, 372 (1-2), 114–117. doi: https://doi.org/10.1016/s0040-6090(00)01026-9
  39. Egorkin, V. S., Vyaliy, I. E., Sinebryukhov, S. L., Gnedenkov, S. V. (2017). Composition, morphology and tribological properties of PEO-coatings formed on an aluminum alloy D16 at different duty cycles of the polarizing signal. Non-Ferrous Metals, 42 (1), 12–16. doi: https://doi.org/10.17580/nfm.2017.01.03
  40. Krishna, L. R., Purnima, A. S., Wasekar, N. P., Sundararajan, G. (2007). Kinetics and Properties of Micro Arc Oxidation Coatings Deposited on Commercial Al Alloys. Metallurgical and Materials Transactions A, 38 (2), 370–378. doi: https://doi.org/10.1007/s11661-006-9054-9
  41. Zhu, L., Guo, Z., Zhang, Y., Li, Z., Sui, M. (2016). A mechanism for the growth of a plasma electrolytic oxide coating on Al. Electrochimica Acta, 208, 296–303. doi: https://doi.org/10.1016/j.electacta.2016.04.186
  42. Karakurkchi, A. V., Sakhnenko, N. D., Ved’, M. V., Mayba, M. V. (2019). Nanostructured Mixed Oxide Coatings on Silumin Incorporated by Cobalt. Nanocomposites, Nanostructures, and Their Applications, 269–291. doi: https://doi.org/10.1007/978-3-030-17759-1_19
  43. Chen, X., Fan, Y. (2020). Study on Preparation, Microstructure and Properties of Micro-Arc Oxidation Ceramic Coating on AZ91 Magnesium Alloy in Phosphate Electrolyte. IOP Conference Series: Materials Science and Engineering, 730, 012029. doi: https://doi.org/10.1088/1757-899x/730/1/012029
  44. Hryniewicz, T. (2018). Plasma Electrolytic Oxidation of Metals and Alloys. Metals, 8 (12), 1058. doi: https://doi.org/10.3390/met8121058
  45. Parsadanov, I. V., Sakhnenko, M. D., Khyzhniak, V. O., Karakyrchi, G. V. (2016). Improving the environmental performance of engines by intra-cylinder neutralization of toxic exhaust gases. Internal Combustion Engines, 2, 63–67. doi: https://doi.org/10.20998/0419-8719.2016.2.12
  46. Yermolenko, I. Yu., Ved, M. V., Karakurkchi, A. V., Sakhnenko, N. D., Kolupayeva, Z. I. (2017). The electrochemical behavior of Fe³⁺ – WO₄²⁻ – Cit³⁻ and Fe³⁺ – MoO₄²⁻ – WO₄²⁻ – Cit³ systems. Voprosy himii i himicheskoy tehnologii, 2, 4–14.
  47. Walsh, F. C., Low, C. T. J., Wood, R. J. K., Stevens, K. T., Archer, J., Poeton, A. R., Ryder, A. (2009). Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys. Transactions of the IMF, 87 (3), 122–135. doi: https://doi.org/10.1179/174591908x372482
  48. Kasalica, B., Petković-Benazzouz, M., Sarvan, M., Belča, I., Maksimović, B., Misailović, B., Popović, Z. (2020). Mechanisms of plasma electrolytic oxidation of aluminum at the multi-hour timescales. Surface and Coatings Technology, 390, 125681. doi: https://doi.org/10.1016/j.surfcoat.2020.125681
  49. Girase, K., Wang, Z., Kamimoto, T., Deguchi, Y., Jeon, M., Cui, M., Huang, E. (2020). Current density effects on plasma emission during plasma electrolytic oxidation (PEO) on AZ91D-magnesium alloy. Modern Physics Letters B, 34 (07n09), 2040025. doi: https://doi.org/10.1142/s0217984920400254
  50. Karakurkchi, A. V., Sakhnenko, N. D., Ved’, M. V., Luhovskyi, I. S., Drobakha, H. A., Mayba, M. V. (2019). Features of Plasma Electrolytic Formation of Manganese- and Cobalt-Containing Composites on Aluminum Alloys. Advances in Materials Science and Engineering, 2019, 1–13. doi: https://doi.org/10.1155/2019/6381291
  51. Sakhnenko, M., Karakurkchi, A., Galak, A., Menshov, S., Matykin, O. (2017). Examining the formation and properties of TiO2 oxide coatings with metals of iron triad. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 4–10. doi: https://doi.org/10.15587/1729-4061.2017.97550
  52. Sakhnenko, N. D., Ved, M. V., Karakurkchi, A. V. (2017). Nanoscale Oxide PEO Coatings Forming from Diphosphate Electrolytes. Nanophysics, Nanomaterials, Interface Studies, and Applications, 507–531. doi: https://doi.org/10.1007/978-3-319-56422-7_38

Downloads

Published

2020-06-30

How to Cite

Karakurkchi, A., Sakhnenko, M., Ved’, M., Tulenko, M., & Dzheniuk, A. (2020). Analysis of technological approaches to electrochemical surface treatment of aluminum alloys. Eastern-European Journal of Enterprise Technologies, 3(12 (105), 44–55. https://doi.org/10.15587/1729-4061.2020.206014

Issue

Section

Materials Science