Development of the method for estimating the technical condition of gas pumping units by their accelerating characteristic

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.206476

Keywords:

gas pumping unit, automatic control system, acceleration characteristic, technical condition

Abstract

Analysis of failures of gas pumping units (GPU) installed on the Urengoy-Pomary-Uzhhorod transcontinental gas pipeline showed that failures of automatic control systems of automatic gas pumping units occupy the second place (up to 40 %) of the total number of failures. It is shown that the well-known methods for monitoring the technical condition of the mechanical part of a gas pumping unit can’t be used to control the operability of automatic control systems and automatic gas control unit components. Among the well-known methods for monitoring the operability of automatic control systems of a gas pumping unit as a dynamic system, the most promising methods are those based on the analysis of its transient process (accelerating characteristic) with some typical input exposure.

The theoretical justification of the developed method for monitoring the performance of the automatic control system of the gas pumping unit is presented, the diagnostic feature of which is the value of the areas of accelerating characteristics. The structure of the transfer function and its parameters were determined by the area method (Simoiu method). To implement the method in MatLab, software was developed that allows one to determine the parameters of the transfer function from the experimental start-up curve of the gas pumping unit and the size of the area limited by its transient function.

The technique of experimental studies of the proposed method for monitoring the efficiency of the automatic control system of a gas pumping unit type GTK-25i example is given. Further implementation of the proposed method requires determining the conditions of its operability and parallel monitoring of the technical condition of the mechanical units of the gas pumping unit in order to exclude their influence on the result of monitoring the state of the automatic control unit of the gas pumping unit

Author Biographies

Mykhailo Gorbiychuk, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Doctor of Technical Sciences, Professor

Department of Computer Systems and Networks

Olena Zamikhovska, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

PhD, Associate Professor

Department of Information and Telecommunication Technology and Systems

Leonid Zamikhovsky, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Doctor of Technical Sciences, Professor

Department of Information and Telecommunication Technology and Systems

Volodymyr Pavlyk, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Department of Information and Telecommunication Technology and Systems

References

  1. Kovalko, M. P., Hrudz, V. Ya., Mykhalkiv, B. V. et. al.; Kovalko, M. P. (Ed.) (2002). Truboprovidnyi transport hazu. Kyiv: Ahenstvo z ratsionalnoho vykorystannia enerhiyi ta ekolohiyi, 600.
  2. Pavlyk, V. V. (2012). Napriamky pidvyshchennia efektyvnosti ekspluatatsiyi hazoperekachuvalnykh ahrehativ v umovakh Bohorodchanskoho LVUMH. Naukovi visti Halytskoi Akademiyi, 2 (22), 44–49.
  3. Zamikhovskyi, L. M., Zikratyi, S. V., Shtaier, L. O. (2017). Suchasnyi stan otsinky nadiynosti system avtomatyky hazoperekachuvalnykh ahrehativ. Naukovyi visnyk Ivano-Frankivskoho natsionalnoho tekhnichnoho universytetu nafty i hazu, 2, 79–88.
  4. Zamikhovskyi, L. M., Saprykin, S. O. (2009). Kontseptsiya monitorynhu tekhnichnoho stanu hazoperekachuvalnoho obladnannia. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Tematychnyi vypusk: Novi rishennia v suchasnykh tekhnolohiyakh, 8, 64–68.
  5. Vasil'ev, Yu. N., Beskletniy, M. E., Igumentsev, E. A., Hrizesten, V. E. (1987). Vibratsionniy kontrol' tehnicheskogo sostoyaniya gazoturbinnyh i gazoperekachivayushchih agregatov. Moscow: Nedra, 197.
  6. Saprykin, S. A. (2009). Metody i tehnicheskie sredstva vibratsionnoy diagnostiki gazoperekachivayushchego oborudovaniya. Kharkiv, 368.
  7. Zamikhovskyi, L. M., Pavlyk, V. V. (2014). Doslidzhennia vibratsiynoho stanu osovoho kompresora HPA HTK-251 firmy "Nuovo Pinione". Metody ta prylady kontroliu yakosti, 1 (32), 28–38.
  8. Kochergin, A. V., Pavlova, N. V., Valeeva, K. A. (2016). Vibroacoustic Control of Technical Conditions of GTE. Procedia Engineering, 150, 363–369. doi: https://doi.org/10.1016/j.proeng.2016.06.723
  9. Verma, N. K., Gupta, R., Sevakula, R. K., Salour, A. (2014). Signal transforms for feature extraction from vibration signal for air compressor monitoring. TENCON 2014 - 2014 IEEE Region 10 Conference. doi: https://doi.org/10.1109/tencon.2014.7022275
  10. Yang, W. S., Su, Y. X., Chen, Y. P. (2019). Air compressor fault diagnosis based on lifting wavelet transform and probabilistic neural network. IOP Conference Series: Materials Science and Engineering, 657, 012053. doi: https://doi.org/10.1088/1757-899x/657/1/012053
  11. Krivosheev, I. A., Akimov, V. I., Kozhinov, D. G. (2017). Detection of Vibrodiagnostic Signs of Working Body Acoustic Vibrations in GPA-16R “Ufa” Gas Channel. Procedia Engineering, 176, 184–193. doi: https://doi.org/10.1016/j.proeng.2017.02.287
  12. Sun, W., An Yang, G., Chen, Q., Palazoglu, A., Feng, K. (2012). Fault diagnosis of rolling bearing based on wavelet transform and envelope spectrum correlation. Journal of Vibration and Control, 19 (6), 924–941. doi: https://doi.org/10.1177/1077546311435348
  13. Zaccaria, V., Rahman, M., Aslanidou, I., Kyprianidis, K. (2019). A Review of Information Fusion Methods for Gas Turbine Diagnostics. Sustainability, 11 (22), 6202. doi: https://doi.org/10.3390/su11226202
  14. Gishvarov, A. S., Raherinjatovo, J. C. (2017). Parametric Diagnostic State of Gas Turbine Power Plant. Procedia Engineering, 206, 1819–1824. doi: https://doi.org/10.1016/j.proeng.2017.10.719
  15. Jinfu, L., Jiao, L., Jie, W., Zhongqi, W., Daren, Y. (2016). Early Fault Detection of Hot Components in Gas Turbines. Journal of Engineering for Gas Turbines and Power, 139 (2). doi: https://doi.org/10.1115/1.4034153
  16. Gishvarov, A. S., Raherinjatovo, J. C. (2018). Parametric diagnostics of the condition of a dual-flow turbojet engine using neural network simulation of the operating process. MATEC Web of Conferences, 224, 02057. doi: https://doi.org/10.1051/matecconf/201822402057
  17. Loboda, I., Olivares Robles, M. A. (2015). Gas Turbine Fault Diagnosis Using Probabilistic Neural Networks. International Journal of Turbo & Jet-Engines, 32 (2). doi: https://doi.org/10.1515/tjj-2014-0019
  18. Fentaye, A. D., Ul-Haq Gilani, S. I., Baheta, A. T., Li, Y.-G. (2018). Performance-based fault diagnosis of a gas turbine engine using an integrated support vector machine and artificial neural network method. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 233 (6), 786–802. doi: https://doi.org/10.1177/0957650918812510
  19. Gorbiychuk, M., Zamikhovska, O., Zamikhovskyi, L., Zikratyi, S., Shtaier, L. (2019). Evaluation of dynamic properties of gas pumping units according to the results of experimental researches. Eastern-European Journal of Enterprise Technologies, 2 (2 (98)), 73–81. doi: https://doi.org/10.15587/1729-4061.2019.163113
  20. Andrianova, L. P., Garipov, F. G., Shaymardanov, F. A. (1997). Kontseptsiya avtokontrolya i diagnostiki otkazov elektronnyh sistem upravleniya dinamicheskimi obektami na osnove identifikatsii koeffitsientov ih peredatochnyh funktsiy. Problemy mashinovedeniya, konstruktivnyh materialov i tehnologiy, 161–168.
  21. Andrianova, L. P. (1997). Kontrol' i diagnostika otkazov SAU GTD. Ufa: UGATU, 182.
  22. Andrianova, L. P., Shaymardanov, F. A., Garipov, F. G. (1997). Pat. No. 2125287 RF. Sposob opredeleniya koeffitsientov peredatochnyh funktsiy lineynyh dinamicheskih obektov. No. 97107306/09; declareted: 06.05.1997; published: 27.03.1999, Bul. No. 2.
  23. Andrianova, L. P., Shaymardanov, F. A. (1997). Identifikatsiya koeffitsientov peredatochnyh funktsiy dinamicheskih obektov. Ufa: UGATU, 195.
  24. Horbiychuk, M. I., Pistun, Ye. P. (2010). Chyslovi metody i modeliuvannia na EOM. Ivano-Frankivsk: Fakel, 408.
  25. Simoyu, M. P. (1957). Determination of transfer function coefficients of linearized units and of control systems. Avtomatika i telemehanika, 18 (6), 514–528.

Downloads

Published

2020-06-30

How to Cite

Gorbiychuk, M., Zamikhovska, O., Zamikhovsky, L., & Pavlyk, V. (2020). Development of the method for estimating the technical condition of gas pumping units by their accelerating characteristic. Eastern-European Journal of Enterprise Technologies, 3(2 (105), 48–57. https://doi.org/10.15587/1729-4061.2020.206476