Measuring signal formation in the bispectral pyrometry

Authors

  • Максим Олександрович Маркін National Technical University of Ukraine "Kyiv Polytechnic Institute" Avenue, 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-5399-6663

DOI:

https://doi.org/10.15587/1729-4061.2014.20787

Keywords:

measuring signal, pyrometer, bispectral pyrometry, CCD, television camera, measurement, temperature

Abstract

The problem of forming the measuring signal in the bispectral pyrometry is considered in the paper. High-temperature technologies become effective only if the technological requirements are met, that, in its turn, is impossible without appropriate industrial gages.

A significant constraint in the field of applying monospectral television measuring devices for controlling temperature modes is the fundamental dependence of measurement results on a priori grounds about the emissivity coefficient of an object and its behavior in the measurement range. In this case, the bispectral pyrometry ensures potentially higher measurement accuracy. But a significant number of issues concerning the bispectral television pyrometry, which are important in theoretical and practical aspects, have not received an adequate interpretation. It means that virtually today there has not been developed potentially the most efficient method for temperature control, which capabilities fully meet the needs of electron-beam technologies for obtaining new materials, laser processing technologies, welding and other related technologies.

The analysis of existing circuits of a multispectral signal formation in the pyrometry was made in the paper. There are circuits with light filters deposited on the matrix, using a polygonal prism or bilens. In the paper, it was suggested using a three-layer matrix for forming a multispectral signal. The main advantage of the circuit for forming the measurement signal is high resolution, as well as the absence of such optical system components as light filters, bilens or prism, which complicate the circuit and cause errors in measurements.

A physical model of forming measurement and output bispectral pyrometer signals was developed. Using the physical model, a mathematical model was developed.

It was concluded that there is a need of further studying properties of bispectral television measuring devices, as well as the influence of slight changes of the emissivity coefficient on errors of temperature measurements.

Author Biography

Максим Олександрович Маркін, National Technical University of Ukraine "Kyiv Polytechnic Institute" Avenue, 37, Kyiv, Ukraine, 03056

Ph.D., Associate Professor

Department of scientific, analytical and ecological devices and systems

References

  1. Порев, Г. В. Підвищення точності телевізійних засобів вимірювання температури поверхні зони плавки [Текст] / Г. В. Порев // Методи та прилади контролю якості. – 2002. – № 9. – С. 39-41.
  2. Згуровский, Г. М. Вимірювання температури зони розплаву в електронно-променевій технології безтигельної зонної плавки [Текст] / Г. М. Згуровский, Г. В. Порєв // Наукові вісті НТУУ «КПІ». – 2003. – № 3. – С. 93-97.
  3. Порев, В. А. Телевізійна пірометрія [Текст] / В. А. Порєв. – К. : АВЕРС, 2002. – 196 с.
  4. Hauer, W., & Zauner, G. (2013, March). High-temperature dual-band thermal imaging by means of high-speed CMOS camera system. In IS&T/SPIE Electronic Imaging (pp. 866103-866103). International Society for Optics and Photonics.
  5. Estevadeordal, J., Tralshawala, N., & Badami, V. (2013, July). Multi-Color Imaging Pyrometry Techniques for Gas Turbine Engine Applications. In ASME 2013 Fluids Engineering Division Summer Meeting (pp. V002T11A007-V002T11A007). American Society of Mechanical Engineers.
  6. US Patent № US3971065 (A) ― 1976-07-20. Color imaging array / Bryce E. Bayer, Mar. 05, 1975.
  7. Direct Image Sensors [Електронний ресурс] : Foveon. – Режим доступу : http://www.foveon.com/.
  8. Foveon X3-матрица [Електронний ресурс] : Материал из свободной русской энциклопедии «Традиция». – Режим доступу: http://traditio.ru/wiki/Foveon_X3-матрица.
  9. Foveon X3 [Електронний ресурс] : Материал из Википедии — свободной энциклопедии. – Режим доступу: http://ru.wikipedia.org/wiki/Foveon_X3.
  10. Маркін, М. О. Біспектральний телевізійний прилад контролю високотемпературних технологій [Текст] / М. О. Маркін, В. А. Порєв // Методи та прилади контролю якості. – 2009. – № 23. – С. 102-105.
  11. Porev, G. V. (2002). Improving the accuracy of measuring instruments television surface temperature zone melting. Methods and instruments of quality control, 9, 39-41.
  12. Zhurovskyy, G. M. (2003). Temperature measurement of molten zone in electron beam technology zone melting. Scientific news “KPI”, 3, 93-97.
  13. Porev, V. A. Television pyrometry (2002). Kyiv, Ukraine. Avers, 196. 4. Hauer, W., Zauner, G. (2013, March). High-temperature dual-band
  14. thermal imaging by means of high-speed CMOS camera system. In IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, 866103-866103.
  15. Estevadeordal, J., Tralshawala, N., Badami, V. (2013, July). MultiColor Imaging Pyrometry Techniques for Gas Turbine Engine Applications. In ASME 2013 Fluids Engineering Division Summer Meeting (pp. V002T11A007-V002T11A007). American Society of Mechanical Engineers.
  16. US Patent № US3971065 (A) ― 1976-07-20. Color imaging array / Bryce E. Bayer, Mar. 05, 1975.
  17. Direct Image Sensors : Foveon. Avialable at: http://www.foveon.com/.
  18. Foveon X3-sensor : From the free Russian encyclopedia “Tradition”. – Avialable at: http://traditio.ru/wiki/Foveon_X3-матрица.
  19. Foveon X3 : Wikipedia, the free encyclopedia. Avialable at: http://ru.wikipedia.org/wiki/Foveon_X3.
  20. Markin, M. O., Poryev, V. A. (2009). Bispectrum television control device of high temperature technologies Methods and instruments of quality control, 23, 102-105.

Published

2014-02-07

How to Cite

Маркін, М. О. (2014). Measuring signal formation in the bispectral pyrometry. Eastern-European Journal of Enterprise Technologies, 1(5(67), 12–16. https://doi.org/10.15587/1729-4061.2014.20787

Issue

Section

Applied physics