Application of a logical-probabilistic method of failure and fault trees for predicting emergency situations at pressure hydraulic facilities (the case of Kakhovka hydroelectric complex)

Authors

  • Dmytro Stefanyshyn Institute of Telecommunications and Global Information Space of the National Academy of Sciences of Ukraine Chokolovsky blvd., 13, Kyiv, Ukraine, 03186, Ukraine https://orcid.org/0000-0002-7620-1613
  • Daniel Benatov National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-9626-6759

DOI:

https://doi.org/10.15587/1729-4061.2020.208467

Keywords:

Kakhovka hydroelectric complex, pressure hydraulic facilities, environmental impact assessment, accident scenario, technological safety

Abstract

The problem of forecasting emergency situations at hydraulic facilities of a hydroelectric complex, forming its pressure waterfront, based on the application of a logical-probabilistic approach is considered.

The relevance of the studies and their practical significance are determined by the need to assess the compliance of the safety of hydraulic facilities with international safety standards and current national legislation. Therefore, the reports on the environmental impact assessment of hydraulic facilities should present the results of assessing the additional risk of emergency situations at the hydroelectric complex. This assessment, in turn, requires an analysis of the probability of accidents at the hydroelectric complex before and after new construction.

In the present study, using the example of the Kakhovka hydroelectric complex (Ukraine), the systemic nature of possible causes of accidents at pressure hydraulic facilities as part of hydroelectric complexes is found. An accident at a hydroelectric complex is considered as a complex natural and man-made event, which can be associated with various natural and man-made factors. The total (generalized) probability of an accident at the hydroelectric complex is estimated by the logical-probabilistic method of failure and fault trees based on a deductive approach.

The upper limit estimates of the probability of accidents at individual hydraulic facilities of the hydroelectric complex and the generalized estimate of the probability of an accident at the hydroelectric complex as a whole are calculated. It is found that the probability of an accident depending on the hydraulic facility of the hydroelectric complex can vary. In the case of the Kakhovka hydroelectric complex, it varies from 2.1×10–6, year–1, at the run-of-river earth dam, to 5.6×10–6, year–1, at the spillway dam. The total probability of an accident at the hydroelectric complex is 2.35×10–5 emergency events per year. However, these estimates do not exceed the permissible value of 5×10–5, year–1, which is regulated for hydraulic facilities of the corresponding consequence class. Thus, it is concluded that the current reliability and safety of the hydraulic facilities of the Kakhovka hydroelectric complex can be recognized as sufficient

Author Biographies

Dmytro Stefanyshyn, Institute of Telecommunications and Global Information Space of the National Academy of Sciences of Ukraine Chokolovsky blvd., 13, Kyiv, Ukraine, 03186

Doctor of Technical Sciences, Professor, Senior Lecturer

Daniel Benatov, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Senior Lecturer

Department of Ecology and Plant Polymers Technology

References

  1. Kakhovska HES imeni P.S. Neporozhnoho. Available at: https://uhe.gov.ua/filiyi/kakhovska_hes_imeni_p_s_neporozhnoho
  2. DBN V.2.4-3:2010. Hidrotekhnichni, enerhetychni ta melioratyvni systemy i sporudy, pidzemni hirnychi vyrobky. Hidrotekhnichni sporudy. Osnovni polozhennia. Available at: https://dbn.co.ua/load/normativy/dbn/1-1-0-802
  3. Prohrama rozvytku hidroenerhetyky na period do 2026 roku. Skhvaleno rozporiadzhenniam Kabinetu Ministriv Ukrainy vid 13 lypnia 2016 r. N 552-r. Available at: http://zakon2.rada.gov.ua/laws/show/552-2016-%D1%80#n7
  4. Stefanyshyn, D. V. (2010). Pro perspektyvy hidroenerhetyky v Ukraini ta vybir variantu rozvytku Dniprovskoho kaskadu z vrakhuvanniam ryzyku. Hidroenerhetyka Ukrainy, 3, 5–11. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/38734/02-Stephanishin.pdf?sequence=1
  5. Pro otsinku vplyvu na dovkillia. Zakon Ukrainy N 2059-VIII vid 23.05.2017 r. Available at: http://zakon.rada.gov.ua/laws/show/2059-19
  6. Otsinka vplyvu na dovkillia. Yedynyi reiestr. Available at: http://eia.menr.gov.ua/
  7. Stefanyshyn, D. V. (2011). Prohnozuvannia avariy na hrebliakh v zadachakh otsinky y zabezpechennia yikh nadiynosti ta bezpeky. Hidroenerhetyka Ukrainy, 3-4, 52–60. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/57960/13-Stefanishin.pdf?sequence=1
  8. Romanchuk, K. H., Stefanyshyn, D. V. (2014). Imovirnisne modeliuvannia stsenariyiv dvokh netypovykh avariy na hidroenerhetychnykh obiektakh. Hidroenerhetyka Ukrainy, 2-3, 20–25. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/141544/06-Romanchuk.pdf?sequence=1
  9. Obiekty krytychnoi infrastruktury ta obiekty krytychnoi informatsiynoi infrastruktury v yevropeiskykh krainakh. Informatsiyna dovidka, pidhotovlena Yevropeiskym informatsiyno-doslidnytskym tsentrom na zapyt Aparatu Verkhovnoi Rady Ukrainy. Available at: http://euinfocenter.rada.gov.ua/uploads/documents/29297.pdf
  10. Putrenko, V., Benatov, D., Stefanyshyn, D. (2016). A geoinformation system of “the hydrocomplexes of Ukraine” as an important part in supporting managerial decisions. Eastern-European Journal of Enterprise Technologies, 1 (3 (79)), 46–53. doi: https://doi.org/10.15587/1729-4061.2016.61135
  11. Green paper on critical infrastructure protection in Ukraine. Proceedings of International Expert Meetings (2015). Kyiv, 176. Available at: http://old2.niss.gov.ua/public/File/2016_book/Syxodolya_ost.pdf
  12. Metodyka identyfikatsiyi potentsiyno nebezpechnykh obiektiv. Zatverdzhena nakazom MNS Ukrainy vid 23.02.2006 r. za N 98. Zareiestrovano v Ministerstvi yustytsiyi Ukrainy vid 20.03.2006 r. za N 286/12160. Available at: http://zakon2.rada.gov.ua/laws/show/z0286-06
  13. Pro obiekty pidvyshchenoi nebezpeky. Zakon Ukrainy N 2245-III vid 26.04.2014 р. Available at: https://zakon.rada.gov.ua/laws/show/2245-14
  14. Veksler, A. B., Ivashintsov, D. A., Stefanishin, D. V. (2002). Nadezhnost', sotsial'naya i ekologicheskaya bezopasnost' gidrotehnicheskih obektov: otsenka riska i prinyatie resheniy. Sankt-Peterburg: VNIIG im. B.E. Vedeneeva, 591.
  15. Ivashintsov, D. A., Stefanishin, D. V., Veksler, A. B. (1993). Ecological and sociodemographic consequences of hydrotechnical construction (Problems of safety and risk). Hydrotechnical Construction, 27 (12), 685–691. doi: https://doi.org/10.1007/bf01545709
  16. Stefanyshyn, D. V. (2012). Statystychni otsinky zhyvuchosti hrebel. Ekolohichna bezpeka ta pryrodokorystuvannia, 11, 53–61. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/57554/06-Stefanishyn.pdf?sequence=1
  17. Stefanishin, D. V. (2008). Breakdown forecast of the designing and constructing dams using the statistical analysis results of the previous breakdowns. Izvestiya VNIIG im. B. E. Vedeneeva, 251, 3–9. Available at: http://www.vniig.rushydro.ru/file/main/vniig/company/activity/publications/collection/5843.html/Volume_251.pdf
  18. Rzhanitsyn, A. R. (1978). Teoriya rascheta stroitel'nyh konstruktsiy na nadezhnost'. Moscow, 239. Available at: https://dwg.ru/lib/1942
  19. Bolotin, V. V. (1981). Metody teorii veroyatnostey i teorii nadezhnosti v raschetah sooruzheniy. Moscow, 351.
  20. Barlou, R., Proshan, F. (1984). Statisticheskaya teoriya nadezhnosti i ispytaniya na bezotkaznost'. Moscow, 328.
  21. Augusti, G., Baratta, A., Kashiati, F. (1988). Veroyatnostnye metody v stroitel'nom proektirovanii. Moscow, 584.
  22. Bolotin, V. V. (1990). Resurs mashin i konstruktsiy. Moscow, 448.
  23. Kumamoto, H., Henley, E. J. (1996). Probabilistic risk assessment and management for engineers and scientists. IEEE Press, 620. doi: https://doi.org/10.1109/9780470546277
  24. The use of risk analysis to support dam safety decisions and management (2000). Trans. of the 20-th Int. Congress on Large Dams. Vol. 1. Q. 76. Beijing-China, 896.
  25. Risk Assessment in Dam Safety Management. A reconnaissance of benefits, methods and current applications (2005). CIGB/ICOLD, 276.
  26. Bellendir, E. N., Ivashintsov, D. A., Stefanishin, D. V. et. al. (2003). Veroyatnostnye metody otsenki nadezhnosti gruntovyh gidrotehnicheskih sooruzheniy. Vol. 1. Sankt-Peterburg: Izd-vo OAO «VNIIG im. B. E. Vedeneeva», 524.
  27. ICOLD Bulletin 99. Dam Failures: Statistical Analysis (1995). ICOLD. Bulletin No. 99. Paris, 216.
  28. Mirtshulava, Ts. E. (2003). Opasnosti i riski na nekotoryh vodnyh i drugih sistemah. Vidy, analiz, otsenka. Tbilisi, 538.
  29. Polovko, A. M., Gurov, S. V. (2006). Osnovy teorii nadezhnosti. Sankt-Peterburg: BHV-Peterburg, 552. Available at: https://ru.b-ok2.org/book/2074949/e16502
  30. Perel'muter, A. V. (2007). Izbrannye problemy nadezhnosti i bezopasnosti stroitel'nyh konstruktsiy. Moscow: Izdatel'stvo ASV, 255.
  31. Ryabinin, I. A. (2007). Nadezhnost' i bezopasnost' strukturno-slozhnyh sistem. Sankt-Peterburg: Izdatel'stvo SPbGU, 276.
  32. Seismic danger. World data center for geoinformatics and sustainable development. Available at: http://wdc.org.ua/uk/node/178
  33. Vaynberg, A. I. (2008). Nadezhnost' i bezopasnost' gidrotehnicheskih sooruzheniy. Izbrannye problemy. Kharkiv: Tyazhpromavtomatika, 304.

Downloads

Published

2020-08-31

How to Cite

Stefanyshyn, D., & Benatov, D. (2020). Application of a logical-probabilistic method of failure and fault trees for predicting emergency situations at pressure hydraulic facilities (the case of Kakhovka hydroelectric complex). Eastern-European Journal of Enterprise Technologies, 4(2 (106), 55–69. https://doi.org/10.15587/1729-4061.2020.208467