Identification of regularities of changes in energy-power parameters depending on the design of the roller node of a new radial-shear mill by computer simulation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.209116

Keywords:

electric motor power, smooth roll, rolling force, rolling moment, radial shear mill, bar, power parameters, helical roll

Abstract

This paper proposes a radial-shear mill (RSM) of a new design, which allows by rolling or rolling and pressing operations obtaining high-quality rods and wires. In addition, it proposes the method of computer calculation of the energy-power parameters of bar extrusion at the RSM of the new design. Mathematical dependences and calculation algorithm were described, which allow calculating energy-power parameters of the combined bar manufacturing process at a given level of technological parameters. Based on the results of analytical studies and computer modeling, the energy-power parameters were defined and analyzed, in addition, the laws of their changes were determined. It is shown that, regardless of the alloy grade or type, when rolling billets on a new RSM with smooth rolls, the strain force is larger in magnitude compared to rolling in helical rolls. It was found that, in comparison with rolling of bars in smooth and helical rolls, their processing by a combined rolling-pressing process leads to an increase in the deformation force of alloys M1 and D16 by 1.1–1.15 and 1.15–1.3 times, respectively. It is shown that during the deformation of the rods on the new RSM, by controlling the paths of the metal flow in the deformation zone, intensive grinding of the metal structure can be achieved. It was found that when pressing the bars on the new RSM, the temperature of the workpiece increases up to 420 °С, which leads to a sharp decrease in the force required for deformation. The nature of the temperature distribution of the pressed metal in the deformation zone was determined. The adequacy of the models was proved by comparing calculated values of the power parameters of extrusion, obtained by engineering technique and numerical simulation

Author Biographies

Serik Mashekov, Satbayev University Satpaev str., 22a, Almaty, Republic of Kazakhstan, 050013

Doctor of Technical Sciences

Department of Transport Technology

Adilzhan Eleuovich Nurtazayev, Satbayev University Satpaev str., 22a, Almaty, Republic of Kazakhstan, 050013

PhD

Department of Industrial Engineering

Aigerim Mashekova, Satbayev University Satpaev str., 22a, Almaty, Republic of Kazakhstan, 050013

PhD

Department of Industrial Engineering

Yerik Nugman, Satbayev University Satpaev str., 22a, Almaty, Republic of Kazakhstan, 050013

PhD

Department of Industrial Engineering

Ulan Angarbekov, Satbayev University Satpaev str., 22a, Almaty, Republic of Kazakhstan, 050013

Department of Industrial Engineering

References

  1. Gorohov, Y. V., Belyaev, S. V., Uskov, I. V., Gubanov, I. Y., Kosovich, A. A. (2014). Development of the combine continuous process of foundry and extrusion. Engineering & Technologies, 4, 436–442.
  2. Sokolov, R. E., Sidelnikov, S. B. (2015). Application of Methods Combined Treatment for Obtaining Welding Wire from Silumins. Journal of Siberian Federal University. Engineering & Technologies, 8 (2), 180–184. doi: https://doi.org/10.17516/1999-494x-2015-8-2-180-184
  3. Dovzhenko, N. N., Sidel'nikov, S. B., Timofeev, V. N. et. al. (2007). Novye tehnologii i oborudovanie dlya obrabotki tsvetnyh metallov i splavov. Modelirovanie i razvitie protsessov OMD, 259–262.
  4. Fakhretdinova, E. I., Raab, G. I., Ganiev, M. M. (2014). Development of a Force Parameter Model for a New Severe Plastic Deformation Technique – Multi-ECAP-Conform. Applied Mechanics and Materials, 698, 386–390. doi: https://doi.org/10.4028/www.scientific.net/amm.698.386
  5. Yar-Mukhamedova, G. Sh. (2000). A mathematical model of formation of the structure of composite films by the cut-off method. Materials Science, 36 (4), 598–601. doi: https://doi.org/10.1023/a:1011382609756
  6. Zheng, X., Luo, P., Dong, J., Wang, S. (2019). The Effect of Casting Speed on Microstructure, Microsegregation, and Mechanical Properties of High-Strength Mg-Nd-Zn-Zr Alloy. Journal of Materials Engineering and Performance, 28 (3), 1753–1761. doi: https://doi.org/10.1007/s11665-019-3878-0
  7. Markov, O. E., Gerasimenko, O. V., Kukhar, V. V., Abdulov, O. R., Ragulina, N. V. (2019). Computational and experimental modeling of new forging ingots with a directional solidification: the relative heights of 1.1. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41 (8). doi: https://doi.org/10.1007/s40430-019-1810-z
  8. Markov, O. E., Gerasimenko, O. V., Shapoval, A. A., Abdulov, O. R., Zhytnikov, R. U. (2019). Computerized simulation of shortened ingots with a controlled crystallization for manufacturing of high-quality forgings. The International Journal of Advanced Manufacturing Technology, 103 (5-8), 3057–3065. doi: https://doi.org/10.1007/s00170-019-03749-4
  9. Sviželová, J., Tkadlečková, M., Michalek, K., Strouhalová, M. (2017). Influence of casting speed on centerline porosity formation in continuously cast round steel billets. Paper presented at the METAL 2017 - 26th International Conference on Metallurgy and Materials, Conference Proceedings, 235–240.
  10. Mendes Filho, A. de A., Prados, E. F., Valio, G. T., Rubert, J. B., Sordi, V. L., Ferrante, M. (2011). Severe plastic deformation by equal channel angular pressing: product quality and operational details. Materials Research, 14 (3), 335–339. doi: https://doi.org/10.1590/s1516-14392011005000045
  11. Furukawa, M., Horita, Z., Nemoto, M., Langdon, T. G. (2002). The use of severe plastic deformation for microstructural control. Materials Science and Engineering: A, 324 (1-2), 82–89. doi: https://doi.org/10.1016/s0921-5093(01)01288-6
  12. Langdon, T. G. (2006). The characteristics of grain refinement in materials processed by severe plastic deformation. Reviews on advanced materials science, 13, 6–14.
  13. Horita, Z. (Ed.) (2005). Nanomaterials by Severe Plastic Deformation. Trans Tech Publications Ltd.
  14. Estrin, Y., Maier, H. J. (Eds.) (2008). Nanomaterials by Severe Plastic Deformation. Trans Tech Publications Ltd.
  15. Galkin, S. P. (2008). Traektorno-skorostnye osobennosti radial'no-sdvigovoy i vintovoy prokatki. Sovremennye problemy metallurgii, 11, 26–33.
  16. Galkin, S. P., Mihaylov, V. K., Romanenko, V. P. et. al. (2001). Voprosy teorii radial'no-sdvigovoy prokatki sortovogo metalla. Proizvodstvo prokata, 7, 23–28.
  17. Haritonov, E. A., Rozhdestvenskiy, V. V., Skryabin, E. A., Kurochkin, L. G. (2001). Vnedrenie tehnologii i oborudovaniya dlya proizvodstva prutkov otvetstvennogo naznacheniya s primeneniem stanov radial'no-sdvigovoy prokatki. Proizvodstvo prokata, 7, 28–32.
  18. Yoon, S. C., Jang, Y. S., Kim, H. S. (2006). Plastic Deformation of Metallic Materials during Twist Extrusion Processing. Korean Journal of Metals and Materials, 44 (7), 480–484.
  19. Mashekov, S. A., Nugman, E. Z., Alshynova, A. M. et. al. (2013). Pat. RK No. 27722. Ustroystvo dlya nepreryvnogo pressovaniya press-izdeliya. published: 18.12.2013, Bul. No. 12.
  20. Alkorta, J., Gil Sevillano, J. (2003). A comparison of FEM and upper-bound type analysis of equal-channel angular pressing (ECAP). Journal of Materials Processing Technology, 141 (3), 313–318. doi: https://doi.org/10.1016/s0924-0136(03)00282-6
  21. Mashekov, S. A., Nurtazaev, A. E., Nugman, E. Z., Absadykov, B. N., Mashekova, A. S. (2018). Simulation of Bending of Heavy-Duty Components of Stands in a Five-Stand Longitudinal-Wedge Mill. Metallurgist, 62 (1-2), 101–110. doi: https://doi.org/10.1007/s11015-018-0631-0
  22. Orlov, G. A. (2016). Osnovy teorii prokatki i volocheniya trub. Ekaterinburg, 204.
  23. Tamila, V. A. (2016). Power parameters of the process of end forming of thick walled tubes. Lit'e i Metallurgiya, 4 (85), 66–72.
  24. Zyuzin, V. I. (2002). Resursosberegayushchie tehnologii pri proizvodstve provoloki. Byulleten' "Chernaya metallurgiya", 7, 52–53.
  25. Kharitonov, V. A., Usanov, M. Yu. (2017). The Improvement in the Methodology for the Calculation of the Drawing Sequences for the High carbon Steels. Ferrous Metallurgy. Bulletin of Scientific, Technical and Economic Information, 8, 92–96.
  26. Dovzhenko, N. N., Dovzhenko, I. N., Sidel'nikov, S. B. (2006). Energosilovye parametry protsessa sovmeshchennoy prokatki-pressovaniya. Vestnik Magnitogorskogo gosudarstvennogo tehnicheskogo universiteta im. G.I. Nosova, 4, 54–61.
  27. Tartakovskiy, I. K. (2009). Nekotorye voprosy proektirovaniya stanov dlya proizvodstva goryachekatanyh besshovnyh trub. Proizvodstvo prokata, 5, 22–28.

Downloads

Published

2020-08-31

How to Cite

Mashekov, S., Nurtazayev, A. E., Mashekova, A., Nugman, Y., & Angarbekov, U. (2020). Identification of regularities of changes in energy-power parameters depending on the design of the roller node of a new radial-shear mill by computer simulation. Eastern-European Journal of Enterprise Technologies, 4(1 (106), 63–71. https://doi.org/10.15587/1729-4061.2020.209116

Issue

Section

Engineering technological systems