Development of a method for optimizing a product quality inspection plan by the risk of non-conformity slippage

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.209325

Keywords:

quality inspection planning, non-conformity risk, probability rank, FMEA, quality management

Abstract

Risk-based approaches are a feature of the modern quality management system. A method of optimization of product quality inspection plan by the risk of non-conformity slippage is proposed. The method is based on a risk ranking matrix, criteria of the failure mode and effects analysis (FMEA), block classification of inspection plans, approaches to non-conformity prediction, and probability multiplication theorem for independent events.

The risk of non-conformity slippage was defined as a criterion of inspection plan optimization. The proposed method allows determining the acceptability of the risk, with 100 % quality inspection, in case of abandoning the inspection operation, the possibility of applying sampling and minimum sampling volumes necessary to ensure an acceptable risk level. Relationships were derived to determine the minimum required number of inspected units out of 1,000, with an acceptable risk level in product quality inspection. The initial data for the calculation are the main characteristics of the inspection plan: the probability of the object conformity with the requirements for the controlled quality characteristic, the probability of not detecting non-conformity with the provided inspection method, the rate of non-conformity slippage, which ensures an acceptable risk level. The formula allows calculating the minimum sampling volume that provides an acceptable level of non-conformity slippage risk during the implementation of the product quality inspection plan (QIP).

The proposed method was tested on the inspection plan for welds of air tanks of the railway car braking system. It is possible to abandon the original 100 % inspection plan and apply sampling, which provides an acceptable level of non-conformity slippage risk. This allows reducing the volume and costs of inspection by 18 %

Author Biographies

Oleh Haievskyi, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Welding Production

Viktor Kvasnytskyi, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Welding Production

Volodymyr Haievskyi, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD

Department of Welding Production

References

  1. Plura, J., Klaput, P. (2012). Influence of the Interaction Between Parts and Appraisers on the Results of Repeatability and Reproducibility Analysis. Quality Innovation Prosperity, 16 (1). doi: https://doi.org/10.12776/qip.v16i1.59
  2. Haievskyi, V. O., Haievskyi, O. A., Zvorykin, C. O. (2018). Investigations of weld seam width variability during shielding gas mixture arc welding, Technological Systems, 82/1, 70–73. doi: https://doi.org/10.29010/082.9
  3. Slyvinskyy, O., Chvertko, Y., Bisyk, S. (2019). Effect of welding heat input on heat-affected zone softening in quenched and tempered armor steels. High Temperature Material Processes An International Quarterly of High-Technology Plasma Processes, 23 (3), 239–253. doi: https://doi.org/10.1615/hightempmatproc.2019031690
  4. Prokhorenko, V. M., Prokhorenko, D. V., Zvorykin, C. O., Hainutdinov, S. F. (2019). Kinetics of strains during single-pass fusion welding of a symmetrical butt joint. Technological Systems, 88/3, 73–84. doi: https://doi.org/10.29010/88.11
  5. Konovalov, N. N. (2006). Normirovanie defektov i dostovernost' nerazrushayushchego kontrolya svarnyh soedineniy. Moscow: FGUP NTTS «Promyshlennaya bezopasnost'». Available at: https://meganorm.ru/Data1/49/49531/index.htm#i374364
  6. Fallah Nezhad, M. S., Hosseini Nasab, H. (2012). A new Bayesian acceptance sampling plan considering inspection errors. Scientia Iranica, 19 (6), 1865–1869. doi: https://doi.org/10.1016/j.scient.2012.09.009
  7. Rezaei, J. (2016). Economic order quantity and sampling inspection plans for imperfect items. Computers & Industrial Engineering, 96, 1–7. doi: https://doi.org/10.1016/j.cie.2016.03.015
  8. Chernovska, K. O. (2012). Develop quality control methods for the manufacture of machinery. Eastern-European Journal of Enterprise Technologies, 4 (3 (58)), 69–71. Available at: http://journals.uran.ua/eejet/article/view/4237/3999
  9. Chernovska, K. O., Yefimenko, N. A. (2013). Search of reserves of improvement of quality system at machinery plants. Eastern-European Journal of Enterprise Technologies, 1 (9 (61)), 69–72. Available at: http://journals.uran.ua/eejet/article/view/9520/8294
  10. Bettayeb, B., Brahimi, N., Lemoine, D. (2016). Integrated Single Item Lot-Sizing and Quality Inspection Planning. IFAC-PapersOnLine, 49 (12), 550–555. doi: https://doi.org/10.1016/j.ifacol.2016.07.693
  11. Schilling, E. G., Neubauer, D. V. (2017). Acceptance sampling in quality control. Boca Raton, 882. doi: https://doi.org/10.1201/9781315120744
  12. Fard, N. S., Kim, J. J. (1993). Analysis of two stage sampling plan with imperfect inspection. Computers & Industrial Engineering, 25 (1-4), 453–456. doi: https://doi.org/10.1016/0360-8352(93)90318-r
  13. Haievskyi, V. (2019). Reducing risks of welding porosity. International Scientific Conference. doi: https://doi.org/10.30525/978-9934-588-13-6-16
  14. Volchenko, V. N. (1975). Kontrol' kachestva svarki. Moscow: Mashinostroenie, 328. Available at: https://urss.ru/cgi-bin/db.pl?lang=Ru&blang=ru&page=Book&id=38053
  15. Volchenko, V. N. (1979). Veroyatnost' i dostovernost' otsenki kachestva metalloproduktsii. Moscow: Metallurgiya, 88. Available at: https://www.twirpx.com/file/463166/
  16. Zimon, D., Madzík, P. (2019). Standardized management systems and risk management in the supply chain. International Journal of Quality & Reliability Management, 37 (2), 305–327. doi: https://doi.org/10.1108/ijqrm-04-2019-0121
  17. Rehacek, P. (2018). Risk management standards for P5M. Journal of Engineering Science and Technology, 13 (1), 011–034. Available at: https://dspace.vsb.cz/bitstream/handle/10084/125684/1823-4690-2018v13i1p11.pdf?sequence=1&isAllowed=y
  18. Kerekes, L., Csernátoni, Z. (2016). News on the implementation of quality management systems according to ISO 9001:2015. Quality - Access to Success, 17 (2), 7–13. Available at: https://www.researchgate.net/publication/304888126_News_on_the_implementation_of_quality_management_systems_according_to_ISO_90012015
  19. Fonseca, L. M. (2015). From quality gurus and TQM to iso 9001:2015: a review of several quality paths. International Journal for Quality Research, 9 (1), 167–180. Available at: https://www.researchgate.net/publication/273698022_FROM_quality_gurus_and_TQM_to_ISO_90012015_A_review_of_several_quality_paths
  20. Popova, L., Yashina, M., Babynina, L., Ryzshakova, A., Yefremova, N., Andreev, A. (2019). The quality management development based on risk-based thinking approach according to ISO 9001. Quality - Access to Success, 20 (170), 58–63. Available at: https://www.researchgate.net/publication/333249424_The_quality_management_development_based_on_risk-based_thinking_approach_according_to_iso_9001
  21. IEC 31010:2019. Risk management – Risk assessment techniques. Available at: https://www.iso.org/ru/standard/72140.html
  22. Rehacek, P. (2019). Risk Management as an Instrument of the Effectiveness of Quality Management System. Quality - Access to Success, 20 (168), 93–96. Available at: https://www.researchgate.net/publication/330882949_Risk_management_as_an_instrument_of_the_effectiveness_of_quality_management_system
  23. Potential failure mode and effects analysis (FMEA) (2012). Nizhniy Novgorod: OOO SMTS «Prioritet», 282. Available at: https://search.rsl.ru/ru/record/01006535560
  24. Gayevsky, V. O., Prokhorenko, V. М., Chvertko, Ye. P., Akhmetbekov, М. Т. (2016). Restriction of Risks of Failure to Meet Requirements to Porosity of Weld Joints. Trudy Universiteta (Karagandinskiy gosudarstvennyy tehnicheskiy universitet), 1, 45–48. Available at: http://www.kstu.kz/tu/2016/trudy_universiteta_1.pdf
  25. Shackleton, D. N. (2006). Reducing Failure Risk in Welded Components. Welding in the World, 50 (9-10), 92–97. doi: https://doi.org/10.1007/bf03263449
  26. Sorooshian, S. (2019). New Means to Risk-Priority-Number for System Improvement. Quality - Access to Success, 20 (171), 18–20. URL: https://search.proquest.com/openview/547d2175cce34d3fc7fd6308dd6aa47c/1?pq-origsite=gscholar&cbl=1046413
  27. Zmievskii, V. I. (2010). Primenenie metoda FMEA dlya obespecheniya kachestva svarnyh konstruktsiy. Svarochnoe proizvodstvo, 9, 41–45. Available at: https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201002247823554131
  28. Juhaszova, D. (2013). Failure Analysis in Development & Manufacture for Customer. Quality Innovation Prosperity, 17 (2). doi: https://doi.org/10.12776/qip.v17i2.203
  29. Banduka, N., Veža, I., Bilić, B. (2016). An integrated lean approach to Process Failure Mode and Effect Analysis (PFMEA): A case study from automotive industry. Advances in Production Engineering & Management, 11 (4), 355–365. doi: https://doi.org/10.14743/apem2016.4.233
  30. Mazur, M. (2017). Assessment of the Construction Welding Process. Procedia Engineering, 192, 580–585. doi: https://doi.org/10.1016/j.proeng.2017.06.100
  31. Bettayeb, B., Bassetto, S.-J. (2016). Impact of type-II inspection errors on a risk exposure control approach based quality inspection plan. Journal of Manufacturing Systems, 40, 87–95. doi: https://doi.org/10.1016/j.jmsy.2016.06.003
  32. Lassen, T. (2013). Risk based Fatigue Inspection Planning – State of the Art. Procedia Engineering, 66, 489–499. doi: https://doi.org/10.1016/j.proeng.2013.12.101
  33. Shishesaz, M. R., Nazarnezhad Bajestani, M., Hashemi, S. J., Shekari, E. (2013). Comparison of API 510 pressure vessels inspection planning with API 581 risk-based inspection planning approaches. International Journal of Pressure Vessels and Piping, 111-112, 202–208. doi: https://doi.org/10.1016/j.ijpvp.2013.07.007
  34. Abubakirov, R., Yang, M., Khakzad, N. (2020). A risk-based approach to determination of optimal inspection intervals for buried oil pipelines. Process Safety and Environmental Protection, 134, 95–107. doi: https://doi.org/10.1016/j.psep.2019.11.031
  35. Straub, D., Faber, M. H. (2005). Risk based inspection planning for structural systems. Structural Safety, 27 (4), 335–355. doi: https://doi.org/10.1016/j.strusafe.2005.04.001
  36. Costa, A. R., Barbosa, C., Santos, G., Alves, M. Ru. (2019). Six Sigma: Main Metrics and R Based Software for Training Purposes and Practical Industrial Quality Control. Quality Innovation Prosperity, 23 (2), 83. doi: https://doi.org/10.12776/qip.v23i2.1278

Downloads

Published

2020-12-31

How to Cite

Haievskyi, O., Kvasnytskyi, V., & Haievskyi, V. (2020). Development of a method for optimizing a product quality inspection plan by the risk of non-conformity slippage. Eastern-European Journal of Enterprise Technologies, 6(3 (108), 50–59. https://doi.org/10.15587/1729-4061.2020.209325

Issue

Section

Control processes