Study of strength, deformability property and crack resistance of beams with BFRP

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.209378

Keywords:

basalt-plastic and steel reinforcement, bearing capacity, static and low-cycle loading

Abstract

Experimental data of strength, deformability, and crack resistance of 2,000×200×100 mm reinforced concrete and basalt-concrete beams are given. Longitudinal reinforcement consisted of 2 Ø14 A500C for reinforced concrete beams and 2 Ø14 BFRP (AKB800) for basalt-concrete beams. Transverse reinforcement consisted of 2 Ø3,4,5 ВрI for reinforced concrete beams and 2 Ø4,6,8 BFRP (АКБ800) for basalt-concrete beams. Beams were made of heavy concrete of C16/20, C30/35, and C40/50 classes. The experimental beam specimens were tested according to a four-point scheme as loosely supported beams loaded with two concentrated forces. Loading in the series of tests was stepwise increasing, static and low-cycle repeated at high levels of 0.50, 0.65, and 0.80Fult. Distance from supports to concentrated forces (shear span), a/h0, varied within 1, 2, 3. Experimental beam specimens were made and tested according to the theory of experimental design according to the Box B4, optimal plan D. Comparative analysis of main performance parameters of reinforced concrete and basalt-concrete beams under the action of abovementioned loads was performed.

The necessity of these studies was determined by the unsatisfactory convergence of experimental and calculated values of bearing capacity of oblique sections of basalt-concrete beams determined according to existing standard methods.

The studies have established the influence of design factors and loading nature on basic parameters of the working capacity of basalt-concrete beam elements in a form of experimental-statistical dependences.

These results will form a basis for a physical model of resistance of oblique sections in such structures to external loads. The presented results will significantly supplement the existing database of the operation of beam basalt-concrete structures and will be used in the development of an analytical method for calculating strength, deformability, and crack resistance

Author Biographies

Vasyl Karpiuk, Odessa State Academy of Civil Engineering and Architecture Didrihsona str., 4, Odessa, Ukraine, 65029

Doctor of Technical Sciences, Professor

Department of Reinforced Concrete Structures and Transport Structures

Alina Tselikova, Odessa State Academy of Civil Engineering and Architecture Didrihsona str., 4, Odessa, Ukraine, 65029

Assistant

Department of Reinforced Concrete Structures and Transport Structures

Artur Khudobych, Odessa State Academy of Civil Engineering and Architecture Didrihsona str., 4, Odessa, Ukraine, 65029

Postgraduate Student

Department of Reinforced Concrete Structures and Transport Structures

Irina Karpiuk, Odessa State Academy of Civil Engineering and Architecture Didrihsona str., 4, Odessa, Ukraine, 65029

PhD, Associate Professor

Department of Foundations

Anatoly Kostyuk, Odessa State Academy of Civil Engineering and Architecture Didrihsona str., 4, Odessa, Ukraine, 65029

PhD, Professor

Department of Reinforced Concrete Structures and Transport Structures

References

  1. Frolov, N. P. (1980). Stekloplastikovaya armatura i stekloplastbetonnye konstruktsii. Moscow: Stroyinzdat, 104. Available at: https://nano-sk.ru/kniga-stekloplastikovaya-armatura-i-stekloplastbetonnye-konstrukcii-n-p-frolov-m-strojizdat-1980/
  2. Dolan, C. W., Hamilton, H. R., Bakis, C. E., Nanni, A. (2000). Design Recommendations for Concrete Struktures Prestressed with FRP Tendons. Final Report. University of Wyoming. Available at: https://pdfs.semanticscholar.org/7e4a/66cb48f647c5a911762f8149997ecf531d70.pdf
  3. Kuzevanov, D. V. (2012). Nauchno-tekhnicheskiy otchet «Konstruktsii s kompozitnoy nemetallicheskoy armaturoy. Obzor i analiz zarubezhnyh i otechestvennyh normativnyh dokumentov». Moscow. Available at: http://fordewind.org/wiki/lib/exe/fetch.php?media=img:nka2012.pdf
  4. Brik, V. B. (2003). Advanced Concept Concrete Using Basalt Fiber/BF Composite Rebar Reinforcement. Final Report for Highway-IDEA Project 86. Washington: Transportation Research Board. Available at: https://basalt.today/images/Advanced.cocept.concrete.basalt.fiber_.basalttoday.pdf
  5. Fico, R., Prota, A., Manfredi, G. (2008). Assessment of Eurocode-like design equations for the shear capacity of FRP RC members. Composites Part B: Engineering, 39 (5), 792–806. doi: https://doi.org/10.1016/j.compositesb.2007.10.007
  6. Kompozitnaya armatura proizvodstva TG «Ekipazh». Available at: https://docplayer.ru/33569383-Kompozitnaya-armatura-proizvodstva-tg-ekipazh-dokladchik-generalnyy-direktor-oreshkin-dmitriy-aleksandrovich.html
  7. DSTU-N B V.2.6-185:2012. Nastanova z proektuvannia ta vyhotovlennia betonnykh konstruktsiy z nemetalevoiu kompozytnoiu armaturoiu na osnovi bazalto – i sklorovinhu (2012). Kyiv: Ministerstvo rehionalnoho rozvytku, budivnytstva ta zhytlovo – komunalnoho hospodarstva Ukrainy, 28. Available at: https://dbn.co.ua/load/normativy/dstu/dstu_n_b_v_2_6_185/5-1-0-1173
  8. Rahmonov, A. D. (2015). Prochnost', Zhestkost' i treschinostoykost' nerazreznyh betonnyh balok s kombinirovannym armirovaniem. Kazan', 160. Available at: https://www.dissforall.com/_catalog/t8/_science/49/740361.html
  9. SNiP 52-01-2003. Concrete and won concrete construction. Design requirements. Svod pravil: SP 63.13330.2012. Moscow. Available at: http://docs.cntd.ru/document/1200095246
  10. Koval, P. M., Hrymak, О. Y., Stoyanovich, S. V. (2018). Taking into account the action of low-cycle loads when calculating concrete beams reinforced by basalt-plastic reinforcement. Bridges and Tunnels: Theory, Research, Practice, 13, 37–45. doi: https://doi.org/10.15802/bttrp2018/151432
  11. Elavenil, S., Saravanan, S., Reddy, R. (2017). Investigation of structural members with basalt rebar reinforcement as an effective alternative of standard steel rebar. Journal of Industrial pollution Control, 33, 1422–1429. Available at: http://www.icontrolpollution.com/articles/investigation-of-structural-members-with-basalt-rebar-reinforcement-as-an-effective-alternative-of-standard-steel-rebar-.pdf
  12. Serbescu, A., Guadagnini, M., Pilakoutas, K. (2015). Mechanical Characterization of Basalt FRP Rebars and Long-Term Strength Predictive Model. Journal of Composites for Construction, 19 (2), 04014037. doi: https://doi.org/10.1061/(asce)cc.1943-5614.0000497
  13. Vincent, P., Ahmed, E., Benmokrane, B. (2013). Characterization of Basalt Fiber-Reinforced Polymer (BFRP) reinforcing bars for concrete structures. Annual Conference of the Canadian Society for Civil Engineering 2013. Montreal, 4489–4498. Available at: http://www.proceedings.com/25328.html
  14. Li, L., Lu, J., Fang, S., Liu, F., Li, S. (2018). Flexural study of concrete beams with basalt fibre polymer bars. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 171 (7), 505–516. doi: https://doi.org/10.1680/jstbu.16.00204
  15. Atutis, M., Valivonis, J., Atutis, E. (2018). Experimental study of concrete beams prestressed with basalt fiber reinforced polymers. Part I: Flexural behavior and serviceability. Composite Structures, 183, 114–123. doi: https://doi.org/10.1016/j.compstruct.2017.01.081
  16. Thorhallsson, E., Zhelyazov, T., Gunnarsson, A., Shape Bjornsson, J. T. (2015). Concrete beams reinforced with prestressed basalt bars. Concrete – innovation and Design: fib Symposium Proceedings. Copenhagen, 277–278.
  17. Zhu, H., Wu, G., Zhang, L., Zhang, J., Hui, D. (2014). Experimental study on the fire resistance of RC beams strengthened with near-surface-mounted high-Tg BFRP bars. Composites Part B: Engineering, 60, 680–687. doi: https://doi.org/10.1016/j.compositesb.2014.01.011
  18. Hofmann, S., Graubner, C.-A., Proske, T. (2018). Load-bearing performance of concrete beams with basalt fibre reinforced polymer (BFRP) rebars. Proceedings of the 12th fib International PhD Symposium in Civil Engineering. Prague, 419–426. Available at: https://www.fib-international.org/publications/fib-proceedings/proceedings-of-the-12th-i-fib-i-international-phd-symposium-in-civil-engineering-pdf-detail.html
  19. Monaldo, E., Nerilli, F., Vairo, G. (2019). Basalt-based fiber-reinforced materials and structural applications in civil engineering. Composite Structures, 214, 246–263. doi: https://doi.org/10.1016/j.compstruct.2019.02.002
  20. Karpiuk, V. M., Syomina, Y. A., Antonova, D. V. (2019). Calculation Models of the Bearing Capacity of Span Reinforced Concrete Structure Support Zones. Materials Science Forum, 968, 209–226. doi: https://doi.org/10.4028/www.scientific.net/msf.968.209
  21. Karpiuk, V., Somina, Y., Maistrenko, O. (2019). Engineering Method of Calculation of Beam Structures Inclined Sections Based on the Fatigue Fracture Model. Lecture Notes in Civil Engineering, 135–144. doi: https://doi.org/10.1007/978-3-030-27011-7_17
  22. Karpiuk, V. M., Somina, Yu. A., Kostiuk, A. I., Maistrenko, O. F. (2018). Osoblyvosti napruzheno-deformovanoho stanu irozrakhunku zilizobetonnykh konstruktsiy za diyi tsyklichnoho navantazhennia vysokykh rivniv. Odessa: ODABA, 233. Available at: http://mx.ogasa.org.ua/handle/123456789/7485
  23. Voznesenskiy, V. A. (1981). Statisticheskie metody planirovaniya eksperimenta v tekhniko-ekonomicheskih issledovaniyah. Moscow: Finansy i statistika, 263. Available at: https://www.twirpx.com/file/788920/
  24. Zalesov, A. S., Klimov, Yu. A. (1989). Prochnost' zhelezobetonnyh konstruktsiy pri deystvii poperechnyh sil. Kyiv: Budіvel'nik, 107. Available at: http://books.totalarch.com/strength_of_reinforced_concrete_structures_under_the_action_of_transverse_forces
  25. Tomlinson, D., Fam, A. (2015). Performance of Concrete Beams Reinforced with Basalt FRP for Flexure and Shear. Journal of Composites for Construction, 19 (2), 04014036. doi: https://doi.org/10.1061/(asce)cc.1943-5614.0000491
  26. Urbanski, M., Lapko, A., Garbacz, A. (2013). Investigation on Concrete Beams Reinforced with Basalt Rebars as an Effective Alternative of Conventional R/C Structures. Procedia Engineering, 57, 1183–1191. doi: https://doi.org/10.1016/j.proeng.2013.04.149
  27. Lapko, A., Urbański, M. (2015). Experimental and theoretical analysis of deflections of concrete beams reinforced with basalt rebar. Archives of Civil and Mechanical Engineering, 15 (1), 223–230. doi: https://doi.org/10.1016/j.acme.2014.03.008
  28. Banibayat, P., Patnaik, A. (2015). Creep Rupture Performance of Basalt Fiber-Reinforced Polymer Bars. Journal of Aerospace Engineering, 28 (3), 04014074. doi: https://doi.org/10.1061/(asce)as.1943-5525.0000391
  29. Zhang, L., Sun, Y., Xiong, W. (2014). Experimental study on the flexural deflections of concrete beam reinforced with Basalt FRP bars. Materials and Structures, 48 (10), 3279–3293. doi: https://doi.org/10.1617/s11527-014-0398-0

Downloads

Published

2020-08-31

How to Cite

Karpiuk, V., Tselikova, A., Khudobych, A., Karpiuk, I., & Kostyuk, A. (2020). Study of strength, deformability property and crack resistance of beams with BFRP. Eastern-European Journal of Enterprise Technologies, 4(7 (106), 42–53. https://doi.org/10.15587/1729-4061.2020.209378

Issue

Section

Applied mechanics