Comparison of fire resistance of polymers in intumescent coatings for steel structures
DOI:
https://doi.org/10.15587/1729-4061.2020.209841Keywords:
vinyl acetate, styrene acrylate, coefficient of swelling, intumescent coating, fire resistance boundary, standard fireAbstract
Thermal destruction of fire-retardant intumescent coating of the composition of ammonium polyphosphate (APP)/melamine (MA)/pentaerythrite (PE)/titanium oxide (TiO2)/polymer, which can be applied for fire protection of steel structures, was studied. The influence of polymers of different nature – ethylene-vinyl acetate (EVA), vinyl acetate versatate (VAVV), styrene acrylates, and vinyl toluene acrylate on the processes of formation of a coke layer and fire-retardant effectiveness of appropriate coatings was determined.
Chemical transformations of polymers EVA and styrene acrylate in the intumescent system of ARR/MA/PE/TiO2 in the temperature range of 200–800 °С were studied. It was established that the processes of the thermal destruction of vinyl acetate polymer are more harmonized with chemical reactions of the components of the intumescent system than similar processes for acrylate aromatic polymers.
Thermal-oxidation destruction of intumescent compositions at the temperatures of 200–800 °С was explored. It was shown that basic chemical processes with polymers of EVA and VAVV begin after 300 °С and flow in the temperature range of 350–600 °С. It was found that the noticeable degradation of the carbon-phosphorus frame of intumescent compositions with styrene acrylate polymers begins at 450 °С, which is almost by 150 °С below the temperature of degradation of the compositions containing vinyl acetate binders.
The conducted fire tests demonstrate that intumescent compositions with the use of acrylate aromatic polymers are more effective at the low coating thickness in ensuring the fire resistance boundary of 30 min. In order to ensure higher values of fire resistance, it is necessary to use intumescent coatings containing vinyl acetate co-polymers as the polymer component.
The study of the impact of polymers of intumescent coatings on the boundary of fire resistance of steel structures has scientific and practical significance for the development of differentiated fire protection means, oriented to the given class of fire resistance. Fire-retardant intumescent compositions examined in this study can be used as the basis for the formulations of materials for fire protection of building structures under conditions of a standard fireReferences
- Yasir, M., Ahmad, F., Yusoff, P. S. M. M., Ullah, S., Jimenez, M. (2019). Latest trends for structural steel protection by using intumescent fire protective coatings: a review. Surface Engineering, 36 (4), 334–363. doi: https://doi.org/10.1080/02670844.2019.1636536
- Puri, R. G., Khanna, A. S. (2016). Intumescent coatings: A review on recent progress. Journal of Coatings Technology and Research, 14 (1), 1–20. doi: https://doi.org/10.1007/s11998-016-9815-3
- Bilotta, A., de Silva, D., Nigro, E. (2016). Tests on intumescent paints for fire protection of existing steel structures. Construction and Building Materials, 121, 410–422. doi: 10.1016/j.conbuildmat.2016.05.144
- Mariappan, T. (2016). Recent developments of intumescent fire protection coatings for structural steel: A review. Journal of Fire Sciences, 34 (2), 120–163. doi: https://doi.org/10.1177/0734904115626720
- Vakhitova, L., Drizhd, V., Тaran, N., Кalafat, K., Bessarabov, V. (2016). The effect of organoclays on the fire-proof efficiency of intumescent coatings. Eastern-European Journal of Enterprise Technologies, 6 (10 (84)), 10–16. doi: https://doi.org/10.15587/1729-4061.2016.84391
- Weil, E. D. (2011). Fire-Protective and Flame-Retardant Coatings - A State-of-the-Art Review. Journal of Fire Sciences, 29 (3), 259–296. doi: https://doi.org/10.1177/0734904110395469
- Riva, A., Camino, G., Fomperie, L., Amigouët, P. (2003). Fire retardant mechanism in intumescent ethylene vinyl acetate compositions. Polymer Degradation and Stability, 82 (2), 341–346. doi: https://doi.org/10.1016/s0141-3910(03)00191-5
- Magnet, S., Duquesne, S., Delobel, R., Jama, C. (2006). Pat. No. US7288588B2. Polymer binder for intumescent coatings. No. 11/473615; declareted: 23.06.2006; published: 30.10.2007. Available at: https://patentimages.storage.googleapis.com/2b/e8/1d/c98c4d5dee03a6/US7288588B2.pdf
- EN 1993-1-1 (2005). Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]. Available at: https://www.phd.eng.br/wp-content/uploads/2015/12/en.1993.1.1.2005.pdf
- Kalafat, K. V., Vakhytova, L. N. (2019). Analiticheskiy obzor sredstv ognezashchity stal'nyh konstruktsiy 2019-2020. Kyiv: «UTsSS», 200. Available at: https://uscc.ua/uploads/page/images/publications/ognezaschita/analiticheskij-obzor-sredstv-ognezashity-stalnyh-konstrukcij-2019-2020.pdf
- Nenakhov, S. A., Pimenova, V. P. (2010). Physico-chemical foaming fire-retardant coatings based on ammonium polyphosphate (review of the literature). Pozharovzryvobezopasnost', 19 (8), 11–58. doi: https://doi.org/10.18322/pvb.2010.19.08.11-58
- Pimenta, J. T., Gonçalves, C., Hiliou, L., Coelho, J. F. J., Magalhães, F. D. (2015). Effect of binder on performance of intumescent coatings. Journal of Coatings Technology and Research, 13 (2), 227–238. doi: https://doi.org/10.1007/s11998-015-9737-5
- Anees, S. M., Dasari, A. (2017). A review on the environmental durability of intumescent coatings for steels. Journal of Materials Science, 53 (1), 124–145. doi: https://doi.org/10.1007/s10853-017-1500-0
- Duquesne, S., Magnet, S., Jama, C., Delobel, R. (2005). Thermoplastic resins for thin film intumescent coatings – towards a better understanding of their effect on intumescence efficiency. Polymer Degradation and Stability, 88 (1), 63–69. doi: https://doi.org/10.1016/j.polymdegradstab.2004.01.026
- Canosa, G., Alfieri, P. V., Giudice, C. A. (2011). Hybrid Intumescent Coatings for Wood Protection against Fire Action. Industrial & Engineering Chemistry Research, 50 (21), 11897–11905. doi: https://doi.org/10.1021/ie200015k
- Hu, Y., Wang, X., Li, J. (2016). Regulating Effect of Exfoliated Clay on Intumescent Char Structure and Flame Retardancy of Polypropylene Composites. Industrial & Engineering Chemistry Research, 55 (20), 5892–5901. doi: https://doi.org/10.1021/acs.iecr.6b00480
- Bourbigot, S., Sarazin, J., Samyn, F., Jimenez, M. (2019). Intumescent ethylene-vinyl acetate copolymer: Reaction to fire and mechanistic aspects. Polymer Degradation and Stability, 161, 235–244. doi: https://doi.org/10.1016/j.polymdegradstab.2019.01.029
- Cai, Y., Hu, Y., Song, L., Lu, H., Chen, Z., Fan, W. (2006). Preparation and characterizations of HDPE–EVA alloy/OMT nanocomposites/paraffin compounds as a shape stabilized phase change thermal energy storage material. Thermochimica Acta, 451 (1-2), 44–51. doi: https://doi.org/10.1016/j.tca.2006.08.015
- Chuang, C.-S., Sheen, H.-J. (2019). Effects of added nanoclay for styrene-acrylic resin on intumescent fire retardancy and CO/CO2 emission. Journal of Coatings Technology and Research, 17 (1), 115–125. doi: https://doi.org/10.1007/s11998-019-00246-x
- Beh, J. H., Yew, M. C., Yew, M. K., Saw, L. H. (2019). Fire Protection Performance and Thermal Behavior of Thin Film Intumescent Coating. Coatings, 9 (8), 483. doi: https://doi.org/10.3390/coatings9080483
- Grexa, O., Lübke, H. (2001). Flammability parameters of wood tested on a cone calorimeter. Polymer Degradation and Stability, 74 (3), 427–432. doi: https://doi.org/10.1016/s0141-3910(01)00181-1
- Bourbigot, S., Duquesne, S. (2007). Fire retardant polymers: recent developments and opportunities. Journal of Materials Chemistry, 17 (22), 2283. doi: https://doi.org/10.1039/b702511d
- Zanetti, M. (2001). Synthesis and thermal behaviour of layered silicate–EVA nanocomposites. Polymer, 42 (10), 4501–4507. doi: https://doi.org/10.1016/s0032-3861(00)00775-8
- Pielichowski, K., Njuguna, J. (2005). Thermal Degradation of Polymeric Materials. Shawbury: Rapra Technology.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Kostyantyn Кalafat, Nadezhda Taran, Viktoriia Plavan, Volodymyr Bessarabov, Glib Zagoriy, Liubov Vakhitova
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.