The effect of sulfur- and carbon-codoped TiO2 nanocomposite on the photocatalytic and mechanical properties of cement mortars

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.210218

Keywords:

nanocomposite, titanium dioxide, cement mortar, photocatalysis, hydrophobicity, free energy

Abstract

This study has established the impact of a nano-ТіО2 P25 modifier and a nanocomposite based on titanium dioxide, doped with sulfur and carbon dioxide (ТіО2/S,C), on the photocatalytic, mechanical properties and the structural formation of cement mortars. The paper reports the results of the particle size distribution of the Portland composite cement and the ТіО2 nano additives; a comprehensive assessment of the particle size distribution has been performed both in terms of volume and specific surface. It has been proven that the ТіО2/S,C nanocomposite is characterized by the extremely high surface activity, which determines the photocatalytic properties of the surface of cement mortars. The comparison of the mechanical properties of cement mortars modified by titanium dioxide nano additives has been carried out.

An experimental study has confirmed the improved photocatalytic properties of the cement mortar surface in the visible spectrum through the doping of the nano-sized titanium dioxide with carbon and sulfur. A combination of the ТіО2 nano additives and the superplasticizers of polycarboxylate type leads to the increased strength of the modified samples in proportion to a hardening age. Given the high surface activity of the ТіО2/S,C nanocomposite's particles, the cement paste hydration products deposit at their surface, thereby forming such conglomerates with them that seal the microstructure of the cement matrix. It has been shown that using a nanocomposite based on the modified titanium dioxide decreases the indicators of free energy while the surface of the cement mortar acquires hydrophobic properties, which contributes to the processes of self-cleaning. Thus, there is a reason to argue about the feasibility of using the ТіО2/S,C nanocomposite to improve the photocatalytic, self-cleaning, mechanical, and hydrophobic properties of cement mortars

Author Biographies

Marko Hohol, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Postgraduate Student

Department of Building Production

Myroslav Sanytsky, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor, Head of Department

Department of Building Production

Tetiana Kropyvnytska, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Building Production

Adriana Barylyak, Danylo Halytsky Lviv National Medical University Pekarska str., 69, Lviv, Ukraine, 79010

PhD, Associate Professor

Department of Therapeutic Dentistry

Yaroslav Bobitski, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor, Head of Department

Department of Photonics

References

  1. Rao, N. V., Rajasekhar, M., Vijayalakshmi, K., Vamshykrishna, M. (2015). The Future of Civil Engineering with the Influence and Impact of Nanotechnology on Properties of Materials. Procedia Materials Science, 10, 111–115. doi: https://doi.org/10.1016/j.mspro.2015.06.032
  2. Solano, R., Patiño-Ruiz, D., Herrera, A. (2020). Preparation of modified paints with nano-structured additives and its potential applications. Nanomaterials and Nanotechnology, 10, 184798042090918. doi: https://doi.org/10.1177/1847980420909188
  3. Cavazos, J. S., González, G., Kharissova, O. V., Ortega, B., Peña, L., Osorio, M., Garza-Castañón, M. (2017). Effect of Nanoparticles on Mechanical Properties of Cement-Sand Mortar Applications. Advances in Chemical Engineering and Science, 07 (03), 270–276. doi: https://doi.org/10.4236/aces.2017.73020
  4. Kropyvnytska, T., Sanytsky, M., Rucinska, T., Rykhlitska, O. (2019). Development of nanomodified rapid hardening clinker-efficient concretes based on composite Portland cements. Eastern-European Journal of Enterprise Technologies, 6 (6 (102)), 38–48. doi: https://doi.org/10.15587/1729-4061.2019.185111
  5. Motzkus, C., Macé, T., Vaslin-Reimann, S., Ausset, P., Maillé, M. (2013). Characterization of manufactured TiO2nanoparticles. Journal of Physics: Conference Series, 429, 012012. doi: https://doi.org/10.1088/1742-6596/429/1/012012
  6. Hamidi, F., Aslani, F. (2019). TiO2-based Photocatalytic Cementitious Composites: Materials, Properties, Influential Parameters, and Assessment Techniques. Nanomaterials, 9 (10), 1444. doi: https://doi.org/10.3390/nano9101444
  7. Li, Z., Ding, S., Yu, X., Han, B., Ou, J. (2018). Multifunctional cementitious composites modified with nano titanium dioxide: A review. Composites Part A: Applied Science and Manufacturing, 111, 115–137. doi: https://doi.org/10.1016/j.compositesa.2018.05.019
  8. Wang, L., Zhang, H., Gao, Y. (2018). Effect of TiO2 Nanoparticles on Physical and Mechanical Properties of Cement at Low Temperatures. Advances in Materials Science and Engineering, 2018, 1–12. doi: https://doi.org/10.1155/2018/8934689
  9. Boonen, E., Beeldens, A. (2014). Recent Photocatalytic Applications for Air Purification in Belgium. Coatings, 4 (3), 553–573. doi: https://doi.org/10.3390/coatings4030553
  10. Sikora, P., Cendrowski, K., Markowska-Szczupak, A., Horszczaruk, E., Mijowska, E. (2017). The effects of silica/titania nanocomposite on the mechanical and bactericidal properties of cement mortars. Construction and Building Materials, 150, 738–746. doi: https://doi.org/10.1016/j.conbuildmat.2017.06.054
  11. Sikora, P., Augustyniak, A., Cendrowski, K., Nawrotek, P., Mijowska, E. (2018). Antimicrobial Activity of Al2O3, CuO, Fe3O4, and ZnO Nanoparticles in Scope of Their Further Application in Cement-Based Building Materials. Nanomaterials, 8 (4), 212. doi: https://doi.org/10.3390/nano8040212
  12. Kądziołka, D., Rokicka, P., Markowska-Szczupak, A., Morawski, A. (2017). Influence of titanium dioxide activated under visible light on survival of mold fungi. Medycyna Pracy, 69 (1), 59–65. doi: https://doi.org/10.13075/mp.5893.00652
  13. Sanytsky, M., Kropyvnytska, T., Kotiv, R. (2014). Modified Plasters for Restoration and Finishing Works. Advanced Materials Research, 923, 42–47. doi: https://doi.org/10.4028/www.scientific.net/amr.923.42
  14. Krivenko, P. V., Sanytsky, M., Kropyvnytska, T., Kotiv, R. (2014). Decorative Multi-Component Alkali Activated Cements for Restoration and Finishing Works. Advanced Materials Research, 897, 45–48. doi: https://doi.org/10.4028/www.scientific.net/amr.897.45
  15. Senff, L., Hotza, D., Lucas, S., Ferreira, V. M., Labrincha, J. A. (2012). Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars. Materials Science and Engineering: A, 532, 354–361. doi: https://doi.org/10.1016/j.msea.2011.10.102
  16. Krivenko, P. V., Sanytsky, M., Kropyvnytska, T. (2019). The Effect of Nanosilica on the Early Strength of Alkali-Activated Portland Composite Cements. Solid State Phenomena, 296, 21–26. doi: https://doi.org/10.4028/www.scientific.net/ssp.296.21
  17. Meng, T., Yu, Y., Qian, X., Zhan, S., Qian, K. (2012). Effect of nano-TiO2 on the mechanical properties of cement mortar. Construction and Building Materials, 29, 241–245. doi: https://doi.org/10.1016/j.conbuildmat.2011.10.047
  18. Ma, B., Li, H., Li, X., Mei, J., Lv, Y. (2016). Influence of nano-TiO2 on physical and hydration characteristics of fly ash–cement systems. Construction and Building Materials, 122, 242–253. doi: https://doi.org/10.1016/j.conbuildmat.2016.02.087
  19. Janus, M., Mądraszewski, S., Zając, K., Kusiak-Nejman, E., Morawski, A. W., Stephan, D. (2019). Photocatalytic Activity and Mechanical Properties of Cements Modified with TiO2/N. Materials, 12 (22), 3756. doi: https://doi.org/10.3390/ma12223756
  20. Siah, W. R., Lintang, H. O., Shamsuddin, M., Yuliati, L. (2016). High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2nanoparticles. IOP Conference Series: Materials Science and Engineering, 107, 012005. doi: https://doi.org/10.1088/1757-899x/107/1/012005
  21. Szymanowski, J., Sadowski, Ł. (2020). The influence of the addition of tetragonal crystalline titanium oxide nanoparticles on the adhesive and functional properties of layered cementitious composites. Composite Structures, 233, 111636. doi: https://doi.org/10.1016/j.compstruct.2019.111636
  22. Lucas, S. S., Ferreira, V. M., de Aguiar, J. L. B. (2013). Incorporation of titanium dioxide nanoparticles in mortars – Influence of microstructure in the hardened state properties and photocatalytic activity. Cement and Concrete Research, 43, 112–120. doi: https://doi.org/10.1016/j.cemconres.2012.09.007
  23. Viana, M. M., Soares, V. F., Mohallem, N. D. S. (2010). Synthesis and characterization of TiO2 nanoparticles. Ceramics International, 36 (7), 2047–2053. doi: https://doi.org/10.1016/j.ceramint.2010.04.006
  24. Barylyak, A., Besaga, K., Bobitski, Y., Vakhula, Y. (2009). Nanophotocatalysts on the Basis of TiO2: Synthesis and Properties. Physics and chemistry of solid state, 10 (3), 515–523.
  25. Vakhula, Y., Besaga, K., Lutsyuk, I., Dobrotvorska, M. (2011). Structural Investigations of Titanium(IV) Oxide Powder Doped with Sulphur. Chemistry & Chemical Technology, 5 (3), 255–258. doi: https://doi.org/10.23939/chcht05.03.255
  26. Tataryn, V., Bobitski, Y., Vlokh, R., Barylyak, A. (2012). ESR research of enhanced visible light photocatalytic activity of S-doped Tio2. Proc. of International Conference on Modern Problem of Radio Engineering, Telecommunications and Computer Science. Lviv-Slavske.
  27. Ivanov, S., Barylyak, A., Besaha, K., Bund, A., Bobitski, Y., Wojnarowska-Nowak, R. et. al. (2016). Synthesis, Characterization, and Photocatalytic Properties of Sulfur- and Carbon-Codoped TiO2 Nanoparticles. Nanoscale Research Letters, 11 (1). doi: https://doi.org/10.1186/s11671-016-1353-5
  28. Barnat-Hunek, D., Smarzewski, P. (2015). Surface free energy of hydrophobic coatings of hybrid-fiber-reinforced high-performance concrete. Materiali in Tehnologije, 49 (6), 895–902. doi: https://doi.org/10.17222/mit.2014.174
  29. Degussa P25 Titanium dioxide nanopowder. Available at: https://www.nanoshel.com/product/degussa-p25-titanium-dioxide/

Downloads

Published

2020-08-31

How to Cite

Hohol, M., Sanytsky, M., Kropyvnytska, T., Barylyak, A., & Bobitski, Y. (2020). The effect of sulfur- and carbon-codoped TiO2 nanocomposite on the photocatalytic and mechanical properties of cement mortars. Eastern-European Journal of Enterprise Technologies, 4(6 (106), 6–14. https://doi.org/10.15587/1729-4061.2020.210218

Issue

Section

Technology organic and inorganic substances