Electrical properties of "water in castor oil" emulsion

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.210312

Keywords:

electric field, castor oil, specific resistance, dielectric loss angle tangent

Abstract

The results of the research into the electrical properties of the "water in castor oil" emulsion, which make it possible to substantiate the technology of castor oil purification from plant impurities and water in an electric field, were presented.

The experimental studies of the electrical properties of the "water in castor oil" emulsion revealed the dependences of specific resistance to direct and alternating currents and dielectric loss angle tangent on the temperature and water content. It was proved that the active component of specific resistance to the suspension "water in castor oil" on AC is smaller than resistance to DC. That is why, at the temperature of 80 °C and water content of 2 %, heat release on AC is 10 % higher than the heat release on DC. According to this, it is advisable to perform the process of castor oil purification from plant impurities and water residues on AC. This makes it possible to obtain additional heat release and thereby compensate for heat losses for the vaporization of flotation bubbles, which leads to the stable process of flotation purification. A comparison of the magnitudes of polarization losses and losses of end-to-end electrical conductivity for pure oil indicates their identical order. The addition of water leads to an increase in polarization losses due to the structural and dipole polarization of water as a polar fluid. Due to this, from the theoretical point of view, it can be argued about additional local heat release on finely dispersed water drops in the quantity, which can ensure the compensation for the heat needed for vaporization. According to this, vaporization does not require indirect heating of the electrode area from an external source at the expense of thermal conductivity.

The obtained results of the experimental research make it possible to substantiate the technological and structural parameters of the electro-technological complex of castor oil purification in the electric field of the cylindrical system of electrodes

Author Biographies

Igor Nazarenko, Dmytro Motornyi Tavria State Agrotechnological University B. Khmelnytskoho ave, 18, Melitopol, Ukraine, 72312

Doctor of Technical Sciences, Professor

Department of Electrotechnology and Thermal Processes

Oleksandr Didenko, Dmytro Motornyi Tavria State Agrotechnological University B. Khmelnytskoho ave, 18, Melitopol, Ukraine, 72312

Postgraduate Student, Assistant

Department of Electrotechnology and Thermal Processes

Aleksandr Loboda, Dmytro Motornyi Tavria State Agrotechnological University B. Khmelnytskoho ave, 18, Melitopol, Ukraine, 72312

PhD

Department of Power Engineering and Automation

Ruslan Kushlyk, Dmytro Motornyi Tavria State Agrotechnological University B. Khmelnytskoho ave, 18, Melitopol, Ukraine, 72312

PhD, Senior Lecturer

Department of Electrotechnology and Thermal Processes

Leonid Chervinsky, National University of Life and Environmental Sciences of Ukraine Heroyiv Oborony str., 15, Kyiv, Ukraine, 03041

Doctor of Technical Sciences, Professor

Department of Electrical Engineering, Electromechanics and Electrical Technology

References

  1. Chinchkar, D. S., Satpute, S. T., Kumbhar, N. R. (2012). Castor Oil as Green Lubricant: A Review. International Journal of Engineering Research & Technology (IJERT), 1 (5). Available at: https://www.ijert.org/research/castor-oil-as-green-lubricant-a-review-IJERTV1IS5236.pdf
  2. Kushlyk, R., Nazarenko, I., Kushlyk, R., Nadykto, V. (2017). Research into effect of ultrasonic, electromagnetic and mechanical treatment of blended biodiesel fuel on viscosity. Eastern-European Journal of Enterprise Technologies, 2 (1 (86)), 34–41. doi: https://doi.org/10.15587/1729-4061.2017.95985
  3. Supeene, G., Koch, C. R., Bhattacharjee, S. (2008). Deformation of a droplet in an electric field: Nonlinear transient response in perfect and leaky dielectric media. Journal of Colloid and Interface Science, 318 (2), 463–476. doi: https://doi.org/10.1016/j.jcis.2007.10.022
  4. Thaokar, R. M. (2012). Dielectrophoresis and deformation of a liquid drop in a non-uniform, axisymmetric AC electric field. The European Physical Journal E, 35 (8). doi: https://doi.org/10.1140/epje/i2012-12076-y
  5. Tarantsev, K. V. (2010). Study of electrohydrodynamic flows at a liquid–liquid phase interface. Chemical and Petroleum Engineering, 46 (1-2), 64–68. doi: https://doi.org/10.1007/s10556-010-9292-y
  6. Didur, V. V., Didur, V. A., Nazarenko, I. P., Nazarova, O. P., Didenko, O. V (2018). Modeling of the process of purification press castor oil by flotation method. Machinery & Energetics. Journal of Rural Production Research, 9 (3), 91–96. Available at: http://www.tsatu.edu.ua/ettp/wp-content/uploads/sites/25/statja-2.pdf
  7. Stishkov, Yu. K., Chirkov, V. A., Sitnikov, A. A. (2014). Dinamicheskie vol't-ampernye harakteristiki slaboprovodyashchih zhidkostey v sil'noneodnorodnyh elektricheskih polyah. Elektronnaya obrabotka materialov, 50 (2), 35–40. Available at: http://eom.phys.asm.md/ru/journal/shortview/1039
  8. Beril I. I., Bologa, M. K. (2010). Temperaturnaya zavisimost' elektroprovodnosti slaboprovodyashchih organicheskih gidkostey. Elektronnaya obrabotka materialov, 46 (3), 43–44. Available at: http://eom.phys.asm.md/ru/journal/shortview/543
  9. Todorov, V. G., Aprahamian, B. R., Tahrilov, H. P. (2015). Opportunities for application of elecrotechnological methods when processing vegetable oils. Conference: 14th International conference of electrical machines, drives and power systems ELMA 2015. Varna. Available at: https://www.researchgate.net/publication/296846046_Opportunities_for_application_of_electrotechnological_methods_when_processing_vegetable_oils
  10. Tarasova, G. I., Shevaga, O. N., Tarasov, V. V., Gracheva, E. O., Haertdinova, A. A. (2015). Issledovanie reologicheskih i elektricheskih svoystv obratnyh emul'siy, stabilizirovannyh termoliznym defekatom TD 600. Vestnik Kazanskogo tehnologicheskogo universiteta, 18 (6), 90–93. Available at: https://cyberleninka.ru/article/n/issledovanie-reologicheskih-i-elektricheskih-svoystv-obratnyh-emulsiy-stabilizirovannyh-termoliznym-defekatom-td-600/viewer
  11. Nazarenko, I., Didenko, O., Loboda, O., Dubinina, S. (2019). The influence of temperature and moisture on the electrophysical properties of castol oil. Naukovyi visnyk Tavriyskoho derzhavnoho ahrotekhnolohichnoho universytetu imeni Dmytra Motornoho, 1 (10). Available at: http://elar.tsatu.edu.ua/bitstream/123456789/11322/1/28.%20%D0%9D%D0%B0%D0%B7%D0%B0%D1%80%D0%B5%D0%BD%D0%BA%D0%BE.pdf
  12. GOST 6581-75. Materialy elektroizolyatsionnye zhidkie. Metody elektricheskih ispytaniy (2008). Moscow: Izd-vo standartov, 16.
  13. Poplavko, Yu. M.; Yakymenko, Yu. I. (Ed.) (2015). Fizyka dielektrykiv. Kyiv: NTUU «KPI», 572.
  14. Efendiev, O. F. (1977). Elektroochistka zhidkosti v pishchevoy promyshlennosti. Moscow: Pishchevaya promyshlennost', 149.
  15. Kikoina, I. K. (Ed.) (1976). Tablitsy fizicheskih velichin. Moscow: Atomizdat, 1008.
  16. Nazarov, N. K. et. al. (1989). Osobennosti obrazovaniya struktur v emul'siyah obratnogo tipa pod deystviem peremennyh elektricheskih poley. Izvestiya Akademii nauk Kazahskoy SSR, 2, 32–37.
  17. Koval', A. V., Vildanov, R. R., Gaynullina, L. R., Sidorenko, A. V., Tutubalina, V. P. (2005). The influence of some factors on exploitationable properties of transformer's. Izvestiya vysshih uchebnyh zavedeniy. Problemy energetiki, 1-2, 100–104.

Downloads

Published

2020-08-31

How to Cite

Nazarenko, I., Didenko, O., Loboda, A., Kushlyk, R., & Chervinsky, L. (2020). Electrical properties of "water in castor oil" emulsion. Eastern-European Journal of Enterprise Technologies, 4(6 (106), 38–44. https://doi.org/10.15587/1729-4061.2020.210312

Issue

Section

Technology organic and inorganic substances