Influence of a signal description model on the calculations of the efficiency indicators of optoelectronic systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.210769

Keywords:

optoelectronic system, corpuscular theory, wave theory of light, statistical model, detection

Abstract

The work is aimed at establishing the boundaries of the use of models for describing signals in optoelectronic systems in calculating efficiency.

A description of the signal formation process is proposed, taking into account the corpuscular and wave properties when registering signals in a wide range of intensities.

A description of the statistical features of the output signals depending on the energy properties of the signal and noise components is proposed. It is shown that when describing the output signals of optoelectronic systems that register signals with different properties, Poisson and Gaussian distributions are used. The invariance of Poisson flows determines the description of an additive mixture of signal and background flows using Poisson flow.

The efficiency of optoelectronic systems is calculated by the signal-to-noise ratio criterion based on the corpuscular and wave description of signals. Efficiency calculations have shown the expedience of using this criterion, provided that the statistical properties of signal and background flows are stabilized. It is shown that under the condition of changes in the energy characteristics of signals, from the point of view of the wave and corpuscular models, the statistical characteristics of the signals have different descriptions.

The analysis of theoretical methods of signal analysis in optoelectronic systems is carried out, which is aimed at an adequate characteristic of the system operation, depending on the conditions of its operation. Taking into account the method of describing the process of receiving and processing signals will take into account additional statistical characteristics of signals, for example, an increase of the variance of the output signal. The use of adaptive methods for describing signals will make it possible to increase the efficiency of systems when receiving strong signals in a difficult interference environment, as well as when receiving weak signals

Author Biographies

Tatiana Strelkova, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Doctor of Technical Sciences, Associate Professor

Department of Microelectronics, Electronic Devices and Appliances

Aleksandr Lytuyga, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

PhD, Senior Researcher

Department of Microelectronics, Electronic Devices and Appliances

Aleksandr Kalmykov, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Postgraduare Student

Department of Microelectronics, Electronic Devices and Appliances

Ganna Khoroshun, Volodymyr Dahl East Ukrainian National University Tsentralnyi ave., 59-A, Severodonetsk, Ukraine, 93404

PhD, Associate Professor

Department of Urban Planning, Construction and Spatial Planning

Andrii Riazantsev, Volodymyr Dahl East Ukrainian National University Tsentralnyi ave., 59-A, Severodonetsk, Ukraine, 93404

Postgraduare Student

Department Computer Sciences and Engineering

Oleksandr Ryazantsev, Volodymyr Dahl East Ukrainian National University Tsentralnyi ave., 59-A, Severodonetsk, Ukraine, 93404

Doctor of Technical Sciences, Professor, Vice-Rector for Scientific-Educational Affairs and International Cooperation

References

  1. Fedoseev, V. I., Kolosov, M. P. (2007). Optiko-elektronnye pribory orientatsii i navigatsii kosmicheskih apparatov. Moscow: Logos, 248.
  2. Parfenov, V. I., Kirillov, V. S. (2012). Optical signal detection according to the photoelectron flow with unknown density waveform. Komp'yuternaya optika, 36 (4), 618–622.
  3. Flores-Fuentes, W., Rivas-Lopez, M., Sergiyenko, O., Gonzalez-Navarro, F., Rivera-Castillo, J., Hernandez-Balbuena, D. (2013). Digital Signal Processing on Optoelectronic for SHM. In Proceedings of the World Congress on Engineering and Computer Science. Vol. I. San Francisco.
  4. Strelkov, A. I., Moskvitin, S. V., Lytyuga, A. P., Strelkova, T. A. (2010). Opticheskaya lokatsiya. Teoreticheskie osnovy priema i obrabotki opticheskih signalov. Kharkiv: Apostrof, 312.
  5. Dutton, N. A. W., Gyongy, I., Parmesan, L., Gnecchi, S., Calder, N., Rae, B. R. et. al. (2016). A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging. IEEE Transactions on Electron Devices, 63 (1), 189–196. doi: https://doi.org/10.1109/ted.2015.2464682
  6. Fossum, E. R. (2013). Modeling the Performance of Single-Bit and Multi-Bit Quanta Image Sensors. IEEE Journal of the Electron Devices Society, 1 (9), 166–174. doi: https://doi.org/10.1109/jeds.2013.2284054
  7. Ma, J., Masoodian, S., Starkey, D. A., Fossum, E. R. (2017). Photon-number-resolving megapixel image sensor at room temperature without avalanche gain. Optica, 4 (12), 1474. doi: https://doi.org/10.1364/optica.4.001474
  8. Al-Ani, M. S., Ali Alheeti, K. M. (2017). Precision Statistical Analysis of Images Based on Brightness Distribution. Advances in Science, Technology and Engineering Systems Journal, 2 (4), 99–104. doi: https://doi.org/10.25046/aj020413
  9. Dutton, N., Gyongy, I., Parmesan, L., Henderson, R. (2016). Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors. Sensors, 16 (7), 1122. doi: https://doi.org/10.3390/s16071122
  10. Nikitin, V. M., Fomin, V. N., Nikolaev, A. I., Borisenkov, I. L. (2008). Adaptivnaya pomehozashchita optiko-elektronnyh informatsionnyh sistem. Belgorod: Izd-vo BelGU, 196.
  11. Tihonov, V. I. (1983). Optimal'niy priem signalov. Moscow: «Radio i svyaz'», 320.
  12. Matveev, А. N. (1988). Optics. Moscow: Mir, 446.
  13. Strilkova, T. (2017). Rozvytok stokhastyko-determinovanoi teoriyi pryiomu ta obrobky syhnaliv v optyko-elektronnykh systemakh. Kyiv, 343.
  14. Strelkova, T., Kartashov, V., Lytyuga, A. P., Strelkov, A. I. (2017). Theoretical Methods of Images Processing in Optoelectronic Systems. Advances in Computational Intelligence and Robotics, 180–205. doi: https://doi.org/10.4018/978-1-5225-0632-4.ch006
  15. Fedoseev, V. I. (2011). Priem prostranstvenno-vremennyh signalov v optiko-elektronnyh sistemah (puassonovskaya model'). Moscow: Logos, 232.
  16. Cunningham, I. A., Shaw, R. (1999). Signal-to-noise optimization of medical imaging systems. Journal of the Optical Society of America A, 16 (3), 621. doi: https://doi.org/10.1364/josaa.16.000621
  17. Feng Yang, Lu, Y. M., Sbaiz, L., Vetterli, M. (2012). Bits From Photons: Oversampled Image Acquisition Using Binary Poisson Statistics. IEEE Transactions on Image Processing, 21 (4), 1421–1436. doi: https://doi.org/10.1109/tip.2011.2179306
  18. Bédard, G. (1967). Analysis of Light Fluctuations from Photon Counting Statistics*. Journal of the Optical Society of America, 57 (10), 1201. doi: https://doi.org/10.1364/josa.57.001201
  19. Strelkova, T. (2015). Using stable distribution laws during evaluation of signal processing efficiency in optoelectronic systems. Eastern-European Journal of Enterprise Technologies, 2 (9 (74)), 4–10. doi: https://doi.org/10.15587/1729-4061.2015.39950
  20. Kuriksha, A. A. (1973). Kvantovaya optika i opticheskaya lokatsiya (statisticheskaya teoriya). Moscow: Sovetskoe radio, 183.
  21. Sheremet'ev, A. G. (1971). Statisticheskaya teoriya lazernoy svyazi. Moscow: «Svyaz'», 264.
  22. Venttsel', E. S., Ovcharov, L. A. (2000). Teoriya sluchaynyh protsessov i ee inzhenernye prilozheniya. Moscow: Vysshaya shkola, 383.
  23. Feller, V. (1967). Vvedenie v teoriyu veroyatnosti i ee prilozheniya. Vol. 2. Moscow: Mir, 765.
  24. Khoroshun, A. N., Vasnetsov, M. V., Pas’ko, V. A., Soskin, M. S. (2007). Structure of the axial intensity minima in the Fresnel diffraction on a circular opening and superluminous effects. Optics Communications, 271 (2), 316–322. doi: https://doi.org/10.1016/j.optcom.2006.10.030
  25. Khoroshun, A., Ryazantsev, A., Ryazantsev, O., Sato, S., Kozawa, Y., Masajada, J. et. al. (2020). Formation of an optical field with regular singular-skeleton structure by the double-phase-ramp converter. Journal of Optics, 22 (2), 025603. doi: https://doi.org/10.1088/2040-8986/ab61c9
  26. Horstmann, J., Spahr, H., Buj, C., Münter, M., Brinkmann, R. (2015). Full-field speckle interferometry for non-contact photoacoustic tomography. Physics in Medicine and Biology, 60 (10), 4045–4058. doi: https://doi.org/10.1088/0031-9155/60/10/4045
  27. Kumar, M., Khan, G. S., Shakher, C. (2015). Measurement of elastic and thermal properties of composite materials using digital speckle pattern interferometry. SPECKLE 2015: VI International Conference on Speckle Metrology. doi: https://doi.org/10.1117/12.2196390
  28. Kulya, M., Petrov, N. V., Tsypkin, A., Egiazarian, K., Katkovnik, V. (2019). Hyperspectral data denoising for terahertz pulse time-domain holography. Optics Express, 27 (13), 18456. doi: https://doi.org/10.1364/oe.27.018456
  29. Bol'shakov, I. A., Rakoshits, V. S. (1978). Prikladnaya teoriya sluchaynyh potokov. Moscow: Sov. radio, 248.
  30. Koks, D., L'yuis, P. (1969). Statisticheskiy analiz posledovatel'nostey sobytiy. Moscow: Mir, 312.

Downloads

Published

2020-08-31

How to Cite

Strelkova, T., Lytuyga, A., Kalmykov, A., Khoroshun, G., Riazantsev, A., & Ryazantsev, O. (2020). Influence of a signal description model on the calculations of the efficiency indicators of optoelectronic systems. Eastern-European Journal of Enterprise Technologies, 4(5 (106), 41–50. https://doi.org/10.15587/1729-4061.2020.210769

Issue

Section

Applied physics