Adaptive treatment of these mediсo-biological researches by methods of computational intelligence

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.21202

Keywords:

computational intelligence, neural network, cluster, centroid, membership degree

Abstract

A new approach to processing data of biomedical researches using methods of computational intelligence is considered in the paper. It lies in fulfilling three stages of data processing: preliminary data preprocessing, which includes rational coding of information; reducing the dimension of space attributes; data clustering. Each stage is essential for achieving the result, which will satisfy a researcher. A peculiar feature of the approach lies in using a unique processing technique with the known and unknown data distribution law, i.e. the law of data distribution does not affect the method results. In addition, the method is not sensitive to the ratio of the amount of objects under research and the amount of indicators, designating these objects. The offered approach implies data processing at a limited sampling (known quantity of objects) and at an unknown beforehand sampling, when data about research targets may be introduced during processing, and can be used for processing medical data samples of various origin. As a result of the proposed method, doctors will receive necessary information about the degree of closeness between objects, about the form of data distribution in the space of attributes and the amount of homogeneous groups (diagnoses) in a given sampling.

Author Biography

Ирина Геннадьевна Перова, Kharkiv National University of Radio Electronics Av. Lenina 14, Kharkov, Ukraine

Senior Lecturer

Department of Biomedical Ingeneering

References

  1. Лбов, Г. С. Метод адаптивного поиска логической решающей функции [Текст] / В. М. Неделько, С. В. Неделько // Сиб. журн. индустр. матем. – 12:3 2009. – С. 66–74
  2. Айвазян, С. А. Прикладная статистика и основы эконометрики. Теория вероятностей и прикладная статистика / В. С. Мхитарян — М.: Юнити, 2001.
  3. Дорофеюк, А. А. Процедуры классификационного анализа в задаче формирования информативных признаков при исследовании ритмической структуры биосигнала [Текст] / А. А. Десова, В. В. Гучук, Ю. А. Дорофеюк, И. В. Покровская // Автоматика и телемеханика. - 2008. - № 6. – С. 143-152.
  4. Zagoruiko, N. Principe of Natural Classification [Text] / N. Zagoruiko, I. Borisova // Int. Journal «Pattern Recognition and Image Analysis». - 2005. - Vol 15, № 1. - P. 27-29.
  5. Nelles, O. Nonlinear System Identification: from classical approaches to neural networks and fuzzy models. [Text] / O. Nelles // Springer - Verlag Berlin Heidelberg New York, 2001. – 785 p.
  6. Seraya, O. V. Linear regression analysis of a small sample of fuzzy input data [Text] / O. V. Seraya, D. A. Demin // Journal of Automation and Information Sciences. – 2012. – Vol. 44 (7). – P. 34 - 48.
  7. Дёмин, Д. А. Нечеткая кластеризация в задаче построение моделей «состав – свойство» по данным пассивного эксперимента в условиях неопределённости / Д. А. Дёмин // Проблемы машиностроения. – 2013. – №6. – С. 15 – 23.
  8. Данилова, Н. В. Применение метода нечетких с-средних для построения функций принадлежности параметров технологического процесса [Текст] / Н. В. Данилова // Сб. научн. тр. семинара «Инновационные технологии, моделирование и автоматизация в металлургии». – Санкт-Петербург, 2010. – С. 11-12.
  9. Тесленко, Н. А. Нечеткая кластеризация массивов биомедицинских данных в условиях избыточности информации [Текст] / Н. А. Тесленко, И. Г. Чурюмова // Бионика интеллекта. – 2006. – №1 (64). – С. 92-95.
  10. Bishop, Christopher. Pattern recognition and machine learning. Berlin: Springer. 2006. - ISBN 0-387-31073-8.
  11. Чурюмова, И. Г. Система медицинской диагностики на основе нечеткой логики [Текст] / И. Г. Чурюмова // Восточно-Европейский журнал передовых технологий. – 2006. – 5/2 (23). – С. 89-91.
  12. Чурюмова, И. Г. Система донозологической диагностики сердечно-сосудистых заболеваний [Текст] / И. Г. Чурюмова // Восточно-Европейский журнал передовых технологий. – 2007. – № 5/4 (29). – С. 31-33.
  13. Чурюмова, И. Г. Применение методов нечеткой кластеризации для анализа медицинских данных в режиме реального времени [Текст] / И. Г. Чурюмова, Н. П. Мустецов // Электроника и связь. Тематический выпуск «Проблемы электроники». –2007. – Ч. 2. – С. 118-121.
  14. Патент України на винахід № 91767 Спосіб оцінки біологічних станів, заснований на нечіткій кластеризації даних множини вимірювальних показників [Текст]: МПК (2009) G06F 19/00 G06F 17/00 G06F 7/00 G01N 33/48/ Бодянський Є. В., Мустецов М. П., Чурюмова І. Г.; Харківський національний університет радіоелектроніки. – Заявл. від 22.12.2008; опубл. 25.08.2010. – Бюл. №16.
  15. Lbov, G. S., Nedel’ko,V. M., Nedel’ko, S. V. (2009). Adaptive Search Method for logical decision function. Sib. journal. industry. Math. 12:3., 66-74.
  16. Aivazyan, S. A., Mkhitaryan, V. S. (2001). Applied statistics and econometrics basis. Probability theory and applied statistics. Moscow: Unity.
  17. Dorofeyuk, A. A., Desova, A. A., Guchuk, V. V., Dorofeyuk, Yu. A., Pokrovskaya, I. V. (2008). Classification analysis procedures in the problem of formation of informative features in the study of the rhythmic structure of a biosignal. Automation and Remote Control, 6, 143-152.
  18. Zagoruiko, N., Borisova, I. (2005). Principe of Natural Classification. Int. Journal «Pattern Recognition and Image Analysis», Vol 15, № 1, 27-29.
  19. Nelles, O. (2001). Nonlinear System Identification: from classical approaches to neural networks and fuzzy models. Springer-Verlag Berlin Heidelberg New York, 785.
  20. Seraya, O. V., Demin, D. A. (2012). Linear regression analysis of a small sample of fuzzy input data. Journal of Automation and Information Sciences. Vol. 44 (7), 34 - 48.
  21. Demin, D. A. (2013). Fuzzy clustering problem in the construction of models “structure - property” according to the passive experiment under conditions of uncertainty. Problems of Mechanical Engineering. № 6, 15 - 23.
  22. Danilova, N. (2010). Application of fuzzy c-means for constructing membership functions of process parameters. Proc. Nauchn. tr. Seminar “Innovative technologies, modeling and automation in metallurgy.” St. Petersburg, 11-12.
  23. Teslenko, N. A. Churyumova, I. G. (2006). Fuzzy clustering of biomedical data sets under redundancy. Bionics intelligence, № 1 (64), 92-95.
  24. Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford: Clarendon Press, 482 p.
  25. Churyumova, I. G. (2006). Medical diagnostic system based on fuzzy logic. East European Journal of advanced technology, 5/2 (23), 89-91.
  26. Churyumova, I. G. (2007). System prenosological diagnosis of cardiovascular diseases. Eastern-European Journal of Enterprise Technologies, 5/4 (29), 31-33.
  27. Churyumova, I. G., Mustetsov, N. P. (2007) Application of fuzzy clustering methods for the analysis of medical data in real time. Electronics and Communications. Special Issue “Problems of electronics.”, Part 2, 118-121.
  28. Bodyanskiy E. V., Mustetsov M. P. Churyumova I.G. (2009). Invention patent of Ukraine № 91767. Method of estimation of biological states based on fuzzy clustering data set of measured data.

Published

2014-02-12

How to Cite

Перова, И. Г. (2014). Adaptive treatment of these mediсo-biological researches by methods of computational intelligence. Eastern-European Journal of Enterprise Technologies, 1(4(67), 24–28. https://doi.org/10.15587/1729-4061.2014.21202

Issue

Section

Mathematics and Cybernetics - applied aspects