A study of the influence of the fullerene C60 additives in compressor oils of various viscosities on the refrigerator performance parameters

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.213968

Keywords:

R290, compressor oil, fullerene С60, vapor compression refrigeration system, coefficient of performance, energy saving

Abstract

The optimal choice of compressor oil and the use of nanoparticles as additives are a promising way to improve the efficiency of vapor compression refrigeration systems. The main barrier for the practical implementation of this approach in the industry is the impossibility of the theoretical prediction of the expected effects on the performance parameters of the refrigeration system.

Experimental data for the cooling capacity, compressor power consumption and coefficient of performance (COP) during operation of the experimental setup (refrigeration system with Embraco Aspera EMT6152U compressor) have been obtained. R290 refrigerant and four different compressor oils (RENISO SP46 alkylbenzene oil with the viscosity of 46 mm2·s-1 at 40 °С, and the same oil containing 0.223·10-4 kg·kg-1 of fullerene C60, ProEco® RF22S polyester oil with the viscosity of 22.26 mm2·s-1 at 40 °С and the same oil containing 6.837·10-4 kg·kg-1of fullerene C60) have been used. The experiment was performed at the refrigerant condensing temperature of 318.5±1.0 K and in the evaporating temperature range of 252…271 K.

When using the two pure oils, the compressor power varied by 2...3 %. The effect of the presence of fullerene C60 on the compressor power was different for different oils. The use of a more viscous oil, as well as the presence of fullerene C60 in the oil, leads to an increase in cooling capacity. The application of the less viscous oil ProEco® RF22S contributes to an increase in COP (up to 20 %) at the evaporating temperatures near 270 K and has no effect on the COP at low temperatures in comparison with RENISO SP46 oil. The presence of fullerene C60 in both oils contributes to an increase in COP up to 15...20 % in the whole range of the studied evaporating temperatures.

Therefore, the expediency of adding the fullerene C60 into compressor oils in order to increase the energy efficiency of the vapor compression refrigeration system without its modernization has been confirmed

Author Biographies

Serhii Korniievych, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65036

Postgraduate Student

Department of Thermal Physics and Applied Ecology

Vitaly Zhelezny, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65036

Doctor of Technical Sciences, Professor

Department of Thermal Physics and Applied Ecology

Olga Khliyeva, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65036

Doctor of Technical Sciences, Аssociate Professor

Department of Thermal Physics and Applied Ecology

Mykola Shymchuk, PJSC “UKsnab”, UBC Group Zaliznychna str., 31-C, Dergachi, Ukraine, 62301

PhD, Project Manager

Design and Technical Department

Natalya Volgusheva, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65036

PhD, Associate Professor

Department of Oil and Gas Technologies, Engineering and Power Engineering

References

  1. Azmi, W. H., Sharif, M. Z., Yusof, T. M., Mamat, R., Redhwan, A. A. M. (2017). Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review. Renewable and Sustainable Energy Reviews, 69, 415–428. doi: https://doi.org/10.1016/j.rser.2016.11.207
  2. Bhattad, A., Sarkar, J., Ghosh, P. (2018). Improving the performance of refrigeration systems by using nanofluids: A comprehensive review. Renewable and Sustainable Energy Reviews, 82, 3656–3669. doi: https://doi.org/10.1016/j.rser.2017.10.097
  3. Kasaeian, A., Hosseini, S. M., Sheikhpour, M., Mahian, O., Yan, W.-M., Wongwises, S. (2018). Applications of eco-friendly refrigerants and nanorefrigerants: A review. Renewable and Sustainable Energy Reviews, 96, 91–99. doi: https://doi.org/10.1016/j.rser.2018.07.033
  4. Sharif, M. Z., Azmi, W. H., Mamat, R., Shaiful, A. I. M. (2018). Mechanism for improvement in refrigeration system performance by using nanorefrigerants and nanolubricants – A review. International Communications in Heat and Mass Transfer, 92, 56–63. doi: https://doi.org/10.1016/j.icheatmasstransfer.2018.02.012
  5. Soliman, A. M. A., Abdel Rahman, A. K., Ookawara, S. (2018). Enhancement of vapor compression cycle performance using nanofluids. Journal of Thermal Analysis and Calorimetry, 135 (2), 1507–1520. doi: https://doi.org/10.1007/s10973-018-7623-y
  6. Lukianov, M., Khliyeva, O., Zhelezny, V., Semenyuk, Y. (2015). Nanorefrigerants application possibilities study to increase the equipment ecological-energy efficiency. Eastern-European Journal of Enterprise Technologies, 3 (5 (75)), 32–40. doi: https://doi.org/10.15587/1729-4061.2015.42565
  7. Jia, T., Wang, R., Xu, R. (2014). Performance of MoFe2O4–NiFe2O4/Fullerene-added nano-oil applied in the domestic refrigerator compressors. International Journal of Refrigeration, 45, 120–127. doi: https://doi.org/10.1016/j.ijrefrig.2014.06.001
  8. Wang, R., Zhang, Y., Liao, Y. (2017). Performance of rolling piston type rotary compressor using fullerenes (C70) and NiFe2O4 nanocomposites as lubricants additives. Frontiers in Energy, 14 (3), 644–648. doi: https://doi.org/10.1007/s11708-017-0453-y
  9. Xing, M., Wang, R., Yu, J. (2014). Application of fullerene C60 nano-oil for performance enhancement of domestic refrigerator compressors. International Journal of Refrigeration, 40, 398–403. doi: https://doi.org/10.1016/j.ijrefrig.2013.12.004
  10. Zhelezny, V., Chen, G., Khliyeva, O., Lukianov, M., Shestopalov, K., Korniievich, S. (2019). An experimental investigation of the influence of fullerene С60 additives in compressor oil on the coefficient of performance of the refrigeration system. Proc. 25th IIR International Congress of Refrigeration. Montreal.
  11. Mchedlov-Petrossyan, N. O. (2013). Fullerenes in Liquid Media: An Unsettling Intrusion into the Solution Chemistry. Chemical Reviews, 113 (7), 5149–5193. doi: https://doi.org/10.1021/cr3005026
  12. Afshari, F., Comakli, O., Lesani, A., Karagoz, S. (2017). Characterization of lubricating oil effects on the performance of reciprocating compressors in air–water heat pumps. International Journal of Refrigeration, 74, 505–516. doi: https://doi.org/10.1016/j.ijrefrig.2016.11.017
  13. Chen, R., Wu, J., Duan, J. (2019). Performance and refrigerant mass distribution of a R290 split air conditioner with different lubricating oils. Applied Thermal Engineering, 162, 114225. doi: https://doi.org/10.1016/j.applthermaleng.2019.114225
  14. Zhelezny, V., Khliyeva, O., Lukianov, M., Motovoy, I., Ivchenko, D., Faik, A. et. al. (2019). Тhermodynamic properties of isobutane/mineral compressor oil and isobutane/mineral compressor oil/fullerenes C60 solutions. International Journal of Refrigeration, 106, 153–162. doi: https://doi.org/10.1016/j.ijrefrig.2019.06.011
  15. Ku, B.-C., Han, Y.-C., Lee, J.-E., Lee, J.-K., Park, S.-H., Hwang, Y.-J. (2010). Tribological effects of fullerene (C60) nanoparticles added in mineral lubricants according to its viscosity. International Journal of Precision Engineering and Manufacturing, 11 (4), 607–611. doi: https://doi.org/10.1007/s12541-010-0070-8
  16. Ginzburg, B. M., Shibaev, L. A., Kireenko, O. F., Shepelevskii, A. A., Baidakova, M. V., Sitnikova, A. A. (2002). Antiwear effect of fullerene C60 additives to lubricating oils. Russian Journal of Applied Chemistry, 75 (8), 1330–1335. doi: https://doi.org/10.1023/a:1020929515246
  17. Zhai, W., Srikanth, N., Kong, L. B., Zhou, K. (2017). Carbon nanomaterials in tribology. Carbon, 119, 150–171. doi: https://doi.org/10.1016/j.carbon.2017.04.027
  18. Gulzar, M., Masjuki, H. H., Kalam, M. A., Varman, M., Zulkifli, N. W. M., Mufti, R. A., Zahid, R. (2016). Tribological performance of nanoparticles as lubricating oil additives. Journal of Nanoparticle Research, 18 (8). doi: https://doi.org/10.1007/s11051-016-3537-4
  19. Murshed, S. M. S., Estellé, P. (2017). A state of the art review on viscosity of nanofluids. Renewable and Sustainable Energy Reviews, 76, 1134–1152. doi: https://doi.org/10.1016/j.rser.2017.03.113
  20. Khliyeva, O., Zhelezny, V., Lukianova, T., Lukianov, N., Semenyuk, Y., Moreira, A. L. N. et. al. (2020). A new approach for predicting the pool boiling heat transfer coefficient of refrigerant R141b and its mixtures with surfactant and nanoparticles using experimental data. Journal of Thermal Analysis and Calorimetry. doi: https://doi.org/10.1007/s10973-020-09479-0
  21. Khliyeva, O., Lukianova, T., Semenyuk, Y., Zhelezny, V., Nikulin, A. (2018). An experimental study of the effect of nanoparticle additives to the refrigerant r141b on the pool boiling process. Eastern-European Journal of Enterprise Technologies, 4 (8 (94)), 59–66. doi: https://doi.org/10.15587/1729-4061.2018.139418
  22. Nikulin, A., Khliyeva, O., Lukianov, N., Zhelezny, V., Semenyuk, Y. (2018). Study of pool boiling process for the refrigerant R11, isopropanol and isopropanol/Al2O3 nanofluid. International Journal of Heat and Mass Transfer, 118, 746–757. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.008
  23. Ruoff, R. S., Tse, D. S., Malhotra, R., Lorents, D. C. (1993). Solubility of fullerene (C60) in a variety of solvents. The Journal of Physical Chemistry, 97 (13), 3379–3383. doi: https://doi.org/10.1021/j100115a049
  24. Avdeev, M. V., Aksenov, V. L., Tropin, T. V. (2010). Models of cluster formation in solutions of fullerenes. Russian Journal of Physical Chemistry A, 84 (8), 1273–1283. doi: https://doi.org/10.1134/s0036024410080017
  25. Hwang, Y., Lee, J. K., Lee, C. H., Jung, Y. M., Cheong, S. I., Lee, C. G. et. al. (2007). Stability and thermal conductivity characteristics of nanofluids. Thermochimica Acta, 455 (1-2), 70–74. doi: https://doi.org/10.1016/j.tca.2006.11.036
  26. ISO 917:1989(E) Testing of Refrigerant Compressors.
  27. Taylor, B. N., Kuyatt, C. E. (1994). Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. United States Department of Commerce Technology Administration. doi: https://doi.org/10.6028/nist.tn.1297

Downloads

Published

2020-10-31

How to Cite

Korniievych, S., Zhelezny, V., Khliyeva, O., Shymchuk, M., & Volgusheva, N. (2020). A study of the influence of the fullerene C60 additives in compressor oils of various viscosities on the refrigerator performance parameters. Eastern-European Journal of Enterprise Technologies, 5(8 (107), 55–62. https://doi.org/10.15587/1729-4061.2020.213968

Issue

Section

Energy-saving technologies and equipment