Developing a model to control the thermal mode of thermoelectric cooling devices by minimizing the set of three basic parameters

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.214154

Keywords:

thermoelectric cooler, thermoelements, working current, failure rate, time to enter a mode

Abstract

The systems maintaining thermal regimes are a necessary component of thermally-loaded radio-electronic equipment, without which its operation is impossible. The uneven distribution of heat emitted by components such as semiconductor lasers, receivers of intense infrared radiation predetermines the preference of thermoelectric coolers for them. The joint application of a cooler and a heat-loaded element significantly tightens the requirements for the reliability indicators and the dynamic characteristics of the cooler. The cause is the influence exerted by the temperature gradients in the soldered joints between different materials of thermoelements and the electrode of the substrate. The main parameters of thermoelectric coolers are the number of thermoelements and the value of the working current. When targeting the design of thermoelectric systems for ensuring thermal regimes based on reliability indicators, the optimization of the problem for the following set has been proposed: the number of thermoelements, the working current, and the relative intensity of failures. At the fixed branches' geometry, decreasing the number of thermoelements leads to a decrease in the heat load, which can be compensated for by increasing the working current of the thermoelectric cooler. A ratio has been derived for the relative working current corresponding to the minimum size of the set. Using the set makes it possible to choose the required working current, for which there is an extremum, which optimizes the process of control over the cooler. The win in the refrigeration factor, compared to the mode of maximum cooling capacity, is 15 %. This demonstrates the advantage of a comprehensive indicator, which allows the development of systems enabling thermal modes for practical application, in particular, on-board systems for which energy consumption is critical. The originality of the results obtained is related to a comprehensive criterion for the basic performance indicators, which has a minimum

Author Biographies

Vladimir Zaykov, Research Institute «STORM» Tereshkovoi str., 27, Odessa, Ukraine, 65076

PhD, Head of Sector

Vladimir Mescheryakov, Odessa State Environmental University Lvivska str., 15, Odessa, Ukraine, 65016

Doctor of Technical Sciences, Professor, Head of Department

Department of Informatics

Yurii Zhuravlov, National University «Odessa Maritime Academy» Didrikhsona str., 8, Odessa, Ukraine, 65029

PhD, Associate Professor

Department of Technology of Materials and Ship Repair

References

  1. Zaykov, V. P., Kinshova, L. A., Moiseev, V. F. (2009). Prognozirovanie pokazateley nadezhnosti termoelektricheskih ohlazhdayushchih ustroystv. Kniga 1. Odnokaskadnye ustroystva. Odessa: Politehperiodika, 120.
  2. Shalumova, N. A., Shalumov, A. S., Martynov, O. Yu., Bagayeva, T. A. (2011). Analysis and provision of thermal characteristics of radioelectronic facilities using the subsystem ASONIKA-T. Advances in modern radio electronics, 1, 42–49.
  3. Sootsman, J. R., Chung, D. Y., Kanatzidis, M. G. (2009). New and Old Concepts in Thermoelectric Materials. Angewandte Chemie International Edition, 48 (46), 8616–8639. doi: https://doi.org/10.1002/anie.200900598
  4. Choi, H.-S., Seo, W.-S., Choi, D.-K. (2011). Prediction of reliability on thermoelectric module through accelerated life test and Physics-of-failure. Electronic Materials Letters, 7 (3), 271–275. doi: https://doi.org/10.1007/s13391-011-0917-x
  5. Eslami, M., Tajeddini, F., Etaati, N. (2018). Thermal analysis and optimization of a system for water harvesting from humid air using thermoelectric coolers. Energy Conversion and Management, 174, 417–429. doi: https://doi.org/10.1016/j.enconman.2018.08.045
  6. Bakhtiaryfard, L., Chen, Y. S. (2014). Design and Analysis of a Thermoelectric Module to Improve the Operational Life. Advances in Mechanical Engineering, 7 (1), 152419. doi: https://doi.org/10.1155/2014/152419
  7. Erturun, U., Mossi, K. (2012). A Feasibility Investigation on Improving Structural Integrity of Thermoelectric Modules With Varying Geometry. Volume 2: Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Bio-Inspired Materials and Systems; Energy Harvesting. doi: https://doi.org/10.1115/smasis2012-8247
  8. Song, H., Song, K., Gao, C. (2019). Temperature and thermal stress around an elliptic functional defect in a thermoelectric material. Mechanics of Materials, 130, 58–64. doi: https://doi.org/10.1016/j.mechmat.2019.01.008
  9. Manikandan, S., Kaushik, S. C., Yang, R. (2017). Modified pulse operation of thermoelectric coolers for building cooling applications. Energy Conversion and Management, 140, 145–156. doi: https://doi.org/10.1016/j.enconman.2017.03.003
  10. Zaykov, V., Mescheryakov, V., Zhuravlov, Y. (2017). Analysis of the possibility to control the inertia of the thermoelectric cooler. Eastern-European Journal of Enterprise Technologies, 6 (8 (90)), 17–24. doi: https://doi.org/10.15587/1729-4061.2017.116005
  11. Zaykov, V., Mescheryakov, V., Zhuravlov, Y., Mescheryakov, D. (2018). Analysis of dynamics and prediction of reliability indicators of a cooling thermoelement with the predefined geometry of branches. Eastern-European Journal of Enterprise Technologies, 5 (8 (95)), 41–51. doi: https://doi.org/10.15587/1729-4061.2018.123890
  12. Zaikov, V., Meshcheryakov, V., Zhuravlov, Y. (2015). Selection of parameters combination of thermoelectric materials for development of high-reliability coolers. Eastern-European Journal of Enterprise Technologies, 3 (8 (75)), 4–14. doi: https://doi.org/10.15587/1729-4061.2015.42474

Downloads

Published

2020-10-31

How to Cite

Zaykov, V., Mescheryakov, V., & Zhuravlov, Y. (2020). Developing a model to control the thermal mode of thermoelectric cooling devices by minimizing the set of three basic parameters. Eastern-European Journal of Enterprise Technologies, 5(8 (107), 63–73. https://doi.org/10.15587/1729-4061.2020.214154

Issue

Section

Energy-saving technologies and equipment