Strength and chemical resistance of composites based on epoxy resins, filled with gypsum in the original and water­hardened forms

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.214399

Keywords:

epoxy composite, gypsum, micro-hardness, chemical resistance, thermal strengthening, strength, morphology, water hardening

Abstract

This paper reports the results of studying epoxy compositions with gypsum taken in the form of dispersed powders in the original and water-hardened form. The exact pattern has been shown in the way the introduction of a gypsum additive in the amount of 50 % by weight affects the strength, chemical stability, and morphology of the composites.

Under conventional heat treatment (60‒110 °C) of the hardened composites, the maximum stress at compression σm and the elasticity module at compression Ес, as well as wear resistance, decrease after the introduction of gypsums (of both types). At the same time, after a hard (destructive) heating at 250‒260 °C, the elasticity module Ес of the hardened composites increases. The maximum stress at compression σm is also increased. The same applies to the wear resistance, which grows especially noticeably after 250 °C.

The micro-hardness after filling is prone to increase but the fragility of epoxy-gypsum composites does not make it possible to measure it when a punch (a steel hemisphere) penetrates it deeper than 20 µm. However, after the heat treatment at 250‒260 °C, the unfilled polymer, on the contrary, is embrittled while the filled ones are plasticized, thus showing a high micro-hardness at significant (30‒50 µm) immersion.

The composites with gypsum, in contrast to the unfilled ones, do not disintegrate in acetone and retain integrity at any aging duration (up to 75 days and beyond). In this case, the original gypsum produces a composite with less swelling in acetone than the hardened gypsum. Based on the data from atomic-strength microscopy (ASM) microscopy, the morphologies of the non-filled composite, the composites with the hardened gypsum and original gypsum are different. The original gypsum forms a composite with a more pronounced (possibly crystalline) filler structure; the morphology for the hardened composite reflects the distribution of inert particles; for the unfilled composite (H-composite), only pores are visible against the background of a relatively smooth relief

Author Biographies

Dmitro Starokadomsky, Chuiko Institute of Surface Chemistry National Academy of Sciences of Ukraine Henerala Naumova str., 17, Kyiv, Ukraine, 03164

PhD, Senior Researcher

Department of Composite Materials No 5

Dmitry Rassokhin, Pryazovskyi State Technical University Universytetska str., 7, Mariupol, Ukraine, 87555

PhD, Associate Professor

Department of Mechanical Equipment of Ferrous Metallurgy Plants

Anatoly Ishchenko, Pryazovskyi State Technical University Universytetska str., 7, Mariupol, Ukraine, 87555

Doctor of Technical Sciences, Professor

Department of Mechanical Equipment of Ferrous Metallurgy Plants

Nadia Sigareva, Chuiko Institute of Surface Chemistry National Academy of Sciences of Ukraine Henerala Naumova str., 17, Kyiv, Ukraine, 03164

Lead Engineer

Department of Composite Materials No 5

Maria Reshetnyk, National Museum of Natural History at the National Academy of Sciences of Ukraine Bohdana Khmelnytskoho str., 15, Kyiv, Ukraine, 01030

PhD, Senior Researcher

Department of Geological

References

  1. Belov, V. V., Bur'yanov, A. F., Yakovlev, G. I. et. al. (2012). Modifikatsiya struktury i svoystv stroitel'nyh kompozitov na osnove sul'fata kal'tsiya. Moscow, 196. Available at: http://www.rosgips.ru/images/doc/sulfat_kaltsia.pdf
  2. Volzhenskiy, A. V. (1986). Mineral'nye vyazhushchie veshchestva. Moscow, 464.
  3. Starokadomsky, D. L. (2018). Physic-mechanical properties and nano-microstructure of epoxy-composites with cement, chаlk and gypsum. Kompozity i Nanostruktury, 10 (1 (37)), 39–51. Available at: https://www.elibrary.ru/item.asp?id=35085460
  4. Starokadomsky, D. L., Ishenko, A. A. (2019). Epoxy Composites Filled with Gypsum (Alabaster G-5): Possible Ways for Strengthening, Stabilization, and Structuration. Composite Materials for Industry, Electronics, and the Environment, 25–44. doi: https://doi.org/10.1201/9780429457937-2
  5. Starokadomskiy, D. L. (2015). Kompozity epoksipolimera s 50 mac.% gipsa, tsementa i mela: otsenka fiziko-mehanicheskih svoystv, himicheskoy stoykosti i mikrostruktury. Visnyk Ukrainskoho materialoznavchoho tovarystva, 1 (8), 84–98. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/125446/13-StarokadomskyNEW.pdf?sequence=1
  6. Starokadomsky, D. (2019). Microfilled Epoxy-Composites, Capable of Thermo-Hardening and Thermo-Plasticization After Hard Heating (200-300 ОC) - For “in-FieldOffroad” Use in Bio-, Agro-, Medservice. Biomedical Journal of Scientific & Technical Research, 19 (1). doi: https://doi.org/10.26717/bjstr.2019.19.003257
  7. Starokadomsky, D. L., Ischenko, A. A., Rassokhin, D. A., Reshetnyk, M. N. (2019). Epoxy composites for equipment repair with 50 wt% silicon carbide, titanium nitride, cement, gypsum: effects of heat strengthening, strength/durability, morphology, comparison with European commercial analogues. Kompozity i nanostruktury, 11 (2 (42)), 85–93.
  8. Davidenko, V. E., Nesterov, A. A., Lebedev, E. V. (2005). Relaksatsionnoe povedenie kompozitsiy, soderzhashchih strukturiruyushchiysya napolnitel' (gips). Polimerniy Zhurnal, 27 (3), 139–142.
  9. Carvalho, M. A., Calil Júnior, C., Savastano Junior, H., Tubino, R., Carvalho, M. T. (2008). Microstructure and mechanical properties of gypsum composites reinforced with recycled cellulose pulp. Materials Research, 11 (4), 391–397. doi: https://doi.org/10.1590/s1516-14392008000400002
  10. Morales-Conde, M. J., Rodríguez-Liñán, C., Pedreño-Rojas, M. A. (2016). Physical and mechanical properties of wood-gypsum composites from demolition material in rehabilitation works. Construction and Building Materials, 114, 6–14. doi: https://doi.org/10.1016/j.conbuildmat.2016.03.137
  11. Gomes, C. E. M., Sousa, A. K. D., Araujo, M. E. da S. O., Ferreira, S. B., Fontanini, P. (2019). Mechanical and Microstructural Properties of Redispersible Polymer-Gypsum Composites. Materials Research, 22 (3). doi: https://doi.org/10.1590/1980-5373-mr-2018-0119
  12. Najim, S. A. Y. T. S., Abdulhussein, A. A. (2011). Physical and Mechanical Properties of PVAc-Gypsum Composite. Al-Mustansiriyah Journal of Science, 22 (4), 175–187.
  13. Sakthieswaran, N., Sophia, M. (2018). Effect of superplasticizers on the properties of latex modified gypsum plaster. Construction and Building Materials, 179, 675–691. doi: https://doi.org/10.1016/j.conbuildmat.2018.05.150
  14. Çolak, A. (2006). Physical and mechanical properties of polymer-plaster composites. Materials Letters, 60 (16), 1977–1982. doi: https://doi.org/10.1016/j.matlet.2005.12.062
  15. Gutiérrez-González, S., Gadea, J., Rodríguez, A., Blanco-Varela, M. T., Calderón, V. (2012). Compatibility between gypsum and polyamide powder waste to produce lightweight plaster with enhanced thermal properties. Construction and Building Materials, 34, 179–185. doi: https://doi.org/10.1016/j.conbuildmat.2012.02.061
  16. Pundir, A., Garg, M., Singh, R. (2015). Evaluation of properties of gypsum plaster-superplasticizer blends of improved performance. Journal of Building Engineering, 4, 223–230. doi: https://doi.org/10.1016/j.jobe.2015.09.012
  17. Matveeva, L., Pakhtinov, V., Tikhonov, Y. (2019). Study of micromycete destructive power in gypsum and polymeric binding composite construction materials. IOP Conference Series: Materials Science and Engineering, 687, 022031. doi: https://doi.org/10.1088/1757-899x/687/2/022031

Downloads

Published

2020-10-31

How to Cite

Starokadomsky, D., Rassokhin, D., Ishchenko, A., Sigareva, N., & Reshetnyk, M. (2020). Strength and chemical resistance of composites based on epoxy resins, filled with gypsum in the original and water­hardened forms. Eastern-European Journal of Enterprise Technologies, 5(12 (107), 73–80. https://doi.org/10.15587/1729-4061.2020.214399

Issue

Section

Materials Science