Development of a complex method for finding a solution for neuro-fuzzy expert systems
DOI:
https://doi.org/10.15587/1729-4061.2020.216662Keywords:
artificial intelligence, operational situation, intelligent systems, decision support systemsAbstract
Artificial intelligence has become the backbone of modern decision support systems. This is why a complex method for finding solutions for neuro-fuzzy expert systems has been developed. The proposed complex method is based on a mathematical model for the analysis of the operational situation. The model makes it possible to determine the parameters of the analysis of the operational situation, their influence on the quality of assessment of the operational situation and to determine their number with units of measurement. An increase in the efficiency of information processing (error reduction) of the assessment is achieved by the use of evolving neuro-fuzzy artificial neural networks. Training of evolving neuro-fuzzy artificial neural networks is carried out by training not only synaptic weights of the artificial neural network, the type, parameters of the membership function, but also by applying the procedure for reducing the dimension of the feature space. The efficiency of information processing is also achieved by training the architecture of artificial neural networks; accounting for the type of uncertainty in the information to be assessed; work with both clear and fuzzy data. We achieved a reduction in computational complexity while making decisions; the absence of errors in training artificial neural networks as a result of processing information entering the input of artificial neural networks. The analysis of the operational situation as a whole occurs due to the improved clustering procedure, which allows working with both static and dynamic data. The proposed complex method was tested on the example of assessing the state of the operational situation. The mentioned example showed an increase in assessment efficiency at the level of 20–25 % in terms of information processing efficiencyReferences
- Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viyskova tekhnika, 1, 35–39.
- Trotsenko, R. V., Bolotov, M. V. (2014). Data extraction process for heterogeneous sources. Privolzhskiy nauchniy vestnik, 12-1 (40), 52–54.
- Bodyanskiy, E., Strukov, V., Uzlov, D. (2017). Generalized metrics in the problem of analysis of multidimensional data with different scales. Zbirnyk naukovykh prats Kharkivskoho universytetu Povitrianykh Syl, 3 (52), 98–101.
- Semenov, V. V., Lebedev, I. S. (2019). Processing of signal information in problems of monitoring information security of unmanned autonomous objects. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 19 (3), 492–498. doi: https://doi.org/10.17586/2226-1494-2019-19-3-492-498
- Zhou, S., Yin, Z., Wu, Z., Chen, Y., Zhao, N., Yang, Z. (2019). A robust modulation classification method using convolutional neural networks. EURASIP Journal on Advances in Signal Processing, 2019 (1). doi: https://doi.org/10.1186/s13634-019-0616-6
- Zhang, D., Ding, W., Zhang, B., Xie, C., Li, H., Liu, C., Han, J. (2018). Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles. Sensors, 18 (3), 924. doi: https://doi.org/10.3390/s18030924
- Kalantaievska, S., Pievtsov, H., Kuvshynov, O., Shyshatskyi, A., Yarosh, S., Gatsenko, S. et. al. (2018). Method of integral estimation of channel state in the multiantenna radio communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (95)), 60–76. doi: https://doi.org/10.15587/1729-4061.2018.144085
- Belousov, S. M. (2006). Matematicheskaya model' mnogopotochnoy sistemy massovogo obsluzhivaniya, upravlyaemoy planirovshchikom resursov. Vestnik Novosibirskogo gosudarstvennogo universiteta. Ser.: Informatsionnye tehnologii, 4 (1), 14–26.
- Kuchuk, N., Mohammed, A. S., Shyshatskyi, A., Nalapko, O. (2019). The method of improving the efficiency of routes selection in networks of connection with the possibility of self-organization. International Journal of Advanced Trends in Computer Science and Engineering, 8 (1), 1–6. Available at: http://www.warse.org/IJATCSE/static/pdf/file/ijatcse01812sl2019.pdf
- Gerami Seresht, N., Fayek, A. R. (2020). Neuro-fuzzy system dynamics technique for modeling construction systems. Applied Soft Computing, 93, 106400. doi: https://doi.org/10.1016/j.asoc.2020.106400
- Folorunso, O., Mustapha, O. A. (2015). A fuzzy expert system to Trust-Based Access Control in crowdsourcing environments. Applied Computing and Informatics, 11 (2), 116–129. doi: https://doi.org/10.1016/j.aci.2014.07.001
- Luy, M., Ates, V., Barisci, N., Polat, H., Cam, E. (2018). Short-Term Fuzzy Load Forecasting Model Using Genetic–Fuzzy and Ant Colony–Fuzzy Knowledge Base Optimization. Applied Sciences, 8 (6), 864. doi: https://doi.org/10.3390/app8060864
- Salmi, K., Magrez, H., Ziyyat, A. (2019). A Novel Expert Evaluation Methodology Based on Fuzzy Logic. International Journal of Emerging Technologies in Learning (iJET), 14 (11), 160. doi: https://doi.org/10.3991/ijet.v14i11.10280
- Allaoua, B., Laoufi, A., Gasbaoui, B., Abderrahmani, A. (2009). Neuro-Fuzzy DC Motor Speed Control Using Particle Swarm Optimization. Leonardo Electronic Journal of Practices and Technologies, 15, 1–18. Available at: http://lejpt.academicdirect.org/A15/001_018.pdf
- Rybak, V. A., Shokr, A. (2016). Analysis and comparison of existing decision support technology. System analysis and applied information science, 3, 12–18.
- Hassanzad, M., Orooji, A., Valinejadi, A., Velayati, A. (2017). A fuzzy rule-based expert system for diagnosing cystic fibrosis. Electronic Physician, 9 (12), 5974–5984. doi: https://doi.org/10.19082/5974
- Shang, W., Gong, T., Chen, C., Hou, J., Zeng, P. (2019). Information Security Risk Assessment Method for Ship Control System Based on Fuzzy Sets and Attack Trees. Security and Communication Networks, 2019, 1–11. doi: https://doi.org/10.1155/2019/3574675
- Safdari, R., Kadivar, M., Nazari, M., Mohammadi, M. (2017). Fuzzy Expert System to Diagnose Neonatal Peripherally Inserted Central Catheters Infection. Health Information Management, 13 (7), 446–452.
- Al-Qudah, Y., Hassan, M., Hassan, N. (2019). Fuzzy Parameterized Complex Multi-Fuzzy Soft Expert Set Theory and Its Application in Decision-Making. Symmetry, 11 (3), 358. doi: https://doi.org/10.3390/sym11030358
- Mikhailov, I. S., Zaw, M. (2015). Finding sloutions by the modified Rete algorithm for fuzzy expert systems. Software & Systems, 4, 142–147. doi: https://doi.org/10.15827/0236-235X.112.142-147
- Mazhara, O. O. (2014). Comparison of TREAT and RETE pattern matching algorithms. Adaptyvni systemy avtomatychnoho upravlinnia, 1 (24), 53–61.
- Mazhara, O. A. (2015). Realizatsiya Treat algoritma na osnove sopostavleniya s obraztsom v programmnoy obolochke CLIPS. Elektronnoe modelirovanie, 37 (5), 61–75.
- Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
- Noh, B., Son, J., Park, H., Chang, S. (2017). In-Depth Analysis of Energy Efficiency Related Factors in Commercial Buildings Using Data Cube and Association Rule Mining. Sustainability, 9 (11), 2119. doi: https://doi.org/10.3390/su9112119
- Petras, V., Petrasova, A., Jeziorska, J., Mitasova, H. (2016). Processing UAV and lidar point clouds in grass GIS. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B7, 945–952. doi: https://doi.org/10.5194/isprs-archives-xli-b7-945-2016
- Polovina, S., Radic, B., Ristic, R., Milcanovic, V. (2016). Spatial and temporal analysis of natural resources degradation in the Likodra River watershed. Glasnik Sumarskog Fakulteta, 114, 169–188. doi: https://doi.org/10.2298/gsf1614169p
- Tymchuk, S. (2017). Methods of Complex Data Processing from Technical Means of Monitoring. Path of Science, 3 (3), 4.1–4.9. doi: https://doi.org/10.22178/pos.20-4
- Semenov, V. V., Lebedev, I. S. (2019). Processing of signal information in problems of monitoring information security of unmanned autonomous objects. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 19 (3), 492–498. doi: https://doi.org/10.17586/2226-1494-2019-19-3-492-498
- Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et. al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
- Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Oleg Sova, Andrii Shyshatskyi, Dmytro Malitskyi, Oleksandr Zhuk, Oleksandr Gaman, Valerii Hordiichuk, Vitalii Fedoriienko, Andrii Kokoiko, Vitalii Shevchuk, Mykhailo Sova
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.