Examination of patterns in obtaining porous structures from submicron aluminum oxide powder and its mixtures

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.216733

Keywords:

silicon carbide, ceramic filter, permeability coefficient, aluminum oxide, polymer, porous structure

Abstract

This paper proposes an economical thermal cycle of the production of ceramic articles from submicronic powders of aluminum oxide, titanium oxide, and manganese oxide. The implementation of a given cycle involves the introduction of a special aluminophosphate bond into the charge in order to reduce the temperature of firing. The optimal composition of the material for a foam-ceramic filter with the highest physical and mechanical properties has been determined; the optimal method for preparing the original charge and the baking mode have been selected.

According to the results of tests under industrial conditions, the manufactured alumina filters became a decent alternative to known analogs used in aluminum metallurgy for the purification of liquid metal. The application and rational dosage of titanium dioxides, manganese, and aluminum aluminophosphate in porous ceramic compositions on an alumina base have made it possible to significantly reduce the time and, consequently, improve the productivity, of firing. The results obtained were evaluated by the level of maximum temperature in the cycle of heat treatment according to known technologies. Compared to those technologies, the developed technology ensures the growth of firing productivity when implementing the proposed solution by about 220 %.

It was found that the high true density of ceramic powder requires large dispersion as the relatively large powder particles are significantly worse retained in foam films and settle.

At medium (intermediate) temperatures, a large weight loss occurs at a heating rate of 10 °C/h. In this case, the decomposition progress changes in proportion to the heating speed. Changing the heating speed with temperature is the most effective technique for deparaffinization in the air. The heating time from the ambient temperature to 200 °C significantly decreases. At a certain temperature, prior to the thermal decomposition, the bond would transfer from a strongly viscous state to a liquid state

Author Biographies

Edwin Gevorkyan, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

Doсtor of Technical Sciences, Professor

Department of Quality, Standardization, Certification and Manufacturing Technology of Products

Volodymyr Nerubatskyi, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

PhD, Associate Professor

Department of Electroenergy, Electrical Engineering and Electromechanics

Yuriy Gutsalenko, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Senior Researcher

Department of Integrated Technologies of Mechanical Engineering named after M.F. Semko

Olga Melnik, Ivan Kozhedub Kharkiv National Air Force University Klochkivska str., 228, Kharkiv, Ukraine, 61045

PhD

Department of Fundamental Disciplines

Liudmyla Voloshyna, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

Assistant

Department of Quality, Standardization, Certification and Manufacturing Technology of Products

References

  1. Raychenko, A. I. (1987). Vliyanie skorosti nagreva na poroobrazovanie v ul'tradisperstnyh poroshkah. Metallurgiya, 5, 14–18.
  2. Schulz, K., Durst, M. (1994). Advantages of an integrated system for hot gas filtration using rigid ceramic elements. Filtration & Separation, 31 (1), 25–28. doi: https://doi.org/10.1016/0015-1882(94)80227-0
  3. Scheffler, M., Colombo, P. (Eds.) (2005). Cellular Ceramics: Structure, Manufacturing, Properties and Applications. Wiley-VCH. doi: https://doi.org/10.1002/3527606696
  4. Gonzenbach, U. T., Studart, A. R., Tervoort, E., Gauckler, L. J. (2006). Stabilization of Foams with Inorganic Colloidal Particles. Langmuir, 22 (26), 10983–10988. doi: https://doi.org/10.1021/la061825a
  5. Pokhrel, A., Park, J. G., Zhao, W., Kim, I. J. (2020). Functional Porous Ceramics Using Amphiphilic Molecule. J. Ceram. Proc. Res., 13 (4), 420–424.
  6. Gevorkyan, E. S., Nerubatskiy, V. P., Mel'nik, O. M. (2010). Goryachee pressovanie nanoporoshkov sostava ZrO2–5%Y2O3. Zbirnyk naukovykh prats Ukrainskoi derzhavnoi akademii zaliznychnoho transportu, 119, 106–110.
  7. Gonzenbach, U. T., Studart, A. R., Tervoort, E., Gauckler, L. J. (2007). Macroporous Ceramics from Particle-Stabilized Wet Foams. Journal of the American Ceramic Society, 90 (1), 16–22. doi: https://doi.org/10.1111/j.1551-2916.2006.01328.x
  8. Pokhrel, A., Park, J. K., Park, S. M., Kim, I. J. (2012). Tailoring the Microstructure of Al2O3-SiO2 Wet Foams to Porous Ceramics. Submitted to J. Ceram. Pro. Res.
  9. Saggio-Woyansky, J., Scott, C., Minnear, W. (1992). Processing of Porous Ceramics. American Ceramic Society Bulletin, 71 (11), 1674–1682.
  10. Akartuna, I., Studart, A. R., Tervoort, E., Gauckler, L. J. (2008). Macroporous Ceramics from Particle‐stabilized Emulsions. Advanced Materials, 20 (24), 4714–4718. doi: https://doi.org/10.1002/adma.200801888
  11. Latella, B. A., Henkel, L., Mehrtens, E. G. (2006). Permeability and high temperature strength of porous mullite-alumina ceramics for hot gas filtration. Journal of Materials Science, 41 (2), 423–430. doi: https://doi.org/10.1007/s10853-005-2654-8
  12. Taslicukur, Z., Balaban, C., Kuskonmaz, N. (2007). Production of ceramic foam filters for molten metal filtration using expanded polystyrene. Journal of the European Ceramic Society, 27 (2-3), 637–640. doi: https://doi.org/10.1016/j.jeurceramsoc.2006.04.129
  13. Gauckler, L. J., Waeber, M. M., Conti, C., Jacob-Duliere, M. (1985). Ceramic Foam For Molten metal Filtration. JOM, 37 (9), 47–50. doi: https://doi.org/10.1007/bf03258640
  14. Zhou, M., Shu, D., Li, K., Zhang, W. Y., Ni, H. J., Sun, B. D., Wang, J. (2003). Deep filtration of molten aluminum using ceramic foam filters and ceramic particles with active coatings. Metallurgical and Materials Transactions A, 34 (5), 1183–1191. doi: https://doi.org/10.1007/s11661-003-0138-5
  15. Hunter, T. N., Pugh, R. J., Franks, G. V., Jameson, G. J. (2008). The role of particles in stabilising foams and emulsions. Advances in Colloid and Interface Science, 137 (2), 57–81. doi: https://doi.org/10.1016/j.cis.2007.07.007
  16. Pokhrel, A., Seo, D. N., Cho, G. H., Kim, I. J. (2013). Inorganic Phosphate Wet Foams Stabilization to Porous Ceramics by Direct Foaming. Asian Journal of Chemistry, 25 (15), 8281–8284. doi: https://doi.org/10.14233/ajchem.2013.14712
  17. Koch, D., Schulz, K., Seville, J. P. K., Clift, R. (1993). Regeneration of Rigid Ceramic Filters. Gas Cleaning at High Temperatures, 244–265. doi: https://doi.org/10.1007/978-94-011-2172-9_16
  18. Yang, F. K., Li, C. W., Lin, Y. M., Wang, C. G. (2012). Fabrication of Porous Mullite Ceramics with High Porosity Using Foam-Gelcasting. Key Engineering Materials, 512-515, 580–585. doi: https://doi.org/10.4028/www.scientific.net/kem.512-515.580
  19. Gevorkyan, E. S., Rucki, M., Kagramanyan, A. A., Nerubatskiy, V. P. (2019). Composite material for instrumental applications based on micro powder Al2O3 with additives nano-powder SiC. International Journal of Refractory Metals and Hard Materials, 82, 336–339. doi: https://doi.org/10.1016/j.ijrmhm.2019.05.010
  20. Powell, S. J., Evans, J. R. G. (1995). The Structure of Ceramic Foams Prepared from Polyurethane-Ceramic Suspensions. Materials and Manufacturing Processes, 10 (4), 757–771. doi: https://doi.org/10.1080/10426919508935063
  21. Schuster, P., Chiari, B. (1980). Foamed Ceramic Element and Process for Making Same. Ceramic International, 6, 27–36.
  22. Barone, M. R., Ulicny, J. C. (1989). Organic binder in Ceramic Powder Compact. Ceram Powder Science, 15 (1), 578–583.
  23. Sarkar, N. (1979). Thermal gelation properties of methyl and hydroxypropyl methylcellulose. Journal of Applied Polymer Science, 24 (4), 1073–1087. doi: https://doi.org/10.1002/app.1979.070240420
  24. Hevorkian, E. S., Nerubatskyi, V. P. (2009). Do pytannia otrymannia tonkodyspersnykh struktur z nanoporoshkiv oksydu aliuminiu. Zbirnyk naukovykh prats Ukrainskoi derzhavnoi akademiyi zaliznychnoho transportu, 111, 151–167.
  25. Hevorkian, E. S., Nerubatskyi, V. P. (2009). Modeliuvannia protsesu hariachoho presuvannia AL2O3 pry priamomu propuskanni zminnoho elektrychnoho strumu z chastotoiu 50 Hts. Zbirnyk naukovykh prats Ukrainskoi derzhavnoi akademiyi zaliznychnoho transportu, 110, 45–52.

Downloads

Published

2020-12-31

How to Cite

Gevorkyan, E., Nerubatskyi, V., Gutsalenko, Y., Melnik, O., & Voloshyna, L. (2020). Examination of patterns in obtaining porous structures from submicron aluminum oxide powder and its mixtures. Eastern-European Journal of Enterprise Technologies, 6(6 (108), 41–49. https://doi.org/10.15587/1729-4061.2020.216733

Issue

Section

Technology organic and inorganic substances