Identification of factors to reduce the energy costs of dispersing in jets

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.217253

Keywords:

jet mill, dispersion, dispersing, energy carrier temperature, solid-phase concentration, acoustic activity

Abstract

This paper reports the operational indicators for industrial-sized jet grinding plants (JGP). The dependences of specific energy consumption on productivity have been generalized. The technological patterns in the working process were considered in terms of reducing energy costs using the operation of gas-jet and steam-jet mills at the Vilnohirsk Mining and Metallurgical Plant (VMMP) involved in crushing zircon to 60 µm as an example. The acoustic activity in the grinding area has been studied relative to the concentration of μ and in combination with the technological assessment of the mill’s performance. A broadband piezo sensor was used in the assessment of acoustic emission (AE). It is shown that the acoustic activity of the grinding zone contains information about the effects of dispersion and energy costs for grinding, which makes it possible to estimate and minimize the specific energy costs. It has been established that the principal factors of JGP energy intensity are the initial temperature of the energy carrier, which sets the speed of the jet, and the concentration of solid phase in the jet, which changes the effects of dispersing. A technique has been proposed for the current assessment of energy costs in the working process of dispersion based on the experimental acoustic data and a pattern of the acoustic dimensional effect. The estimated acoustic indicators of the energy cost of a jet mill for the conditions of VMMP were derived. To reduce the energy cost of dispersion (γs@0.42 J/cm2), the effect of adjusting the loading of jets to γN@1.8 J/pulse is employed. Thus, this study has investigated the dispersal of solid loose material in jets with the involvement of acoustic information about the operation of jet mills, which makes it possible to comprehensively assess and minimize (optimize) the specific energy costs of grinding

Author Biographies

Larisa Gorobets, Dnipro University of Technology Dmytra Yavornytskoho ave., 19, Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Professor

Department of Technological Engineering of Materials Processing

Inna Verkhorobina, Institute of Geotechnical Mechanics name by N. Polyakov of National Academy of Sciences of Ukraine Simferopolska str., 2-a, Dnipro, Ukraine, 49005

Engineer

Department of Geodynamic Systems and Vibration Technology

Volodymyr Biletsky, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Oil, Gas and Condensate Extraction

Andrii Kryvenko, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Senior Lecturer

Department of Mineral Processing and Chemistry

Mykhailo Hryshchenko, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Postgraduate Student, Assistant

Department of Underground Development of Mineral Deposits

Oleksij Bulakh, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of Mineral Processing and Chemistry

References

  1. Gorobets, L. Zh. (1999). Mikroporoshki: tehnologiya i oborudovanie. Zbahachennia korysnykh kopalyn, 4 (45), 33–41.
  2. Gorobets, V. I., Gorobets, L. Zh. (1977). Novoe napravlenie rabot po izmel'cheniyu. Moscow: Nedra, 182.
  3. Gorobets, L. Zh. (2004). Razvitie nauchnyh osnov izmel'cheniya tverdyh poleznyh iskopaemyh. Dnepropetrovsk, 35.
  4. Biletskyi, V. S. (Ed.) (2007). Mala hirnycha entsyklopediya. Vol. 2. Donetsk: Donbas, 141.
  5. Llorente, A., Serrano, B., Baselga, J., Gedler, G., Ozisik, R. (2019). Jet Milling as an Alternative Processing Technique for Preparing Polysulfone Hard Nanocomposites. Advances in Materials Science and Engineering, 2019, 1–8. doi: https://doi.org/10.1155/2019/3501402
  6. Ghambari, M., Emadi Shaibani, M., Eshraghi, N. (2012). Production of grey cast iron powder via target jet milling. Powder Technology, 221, 318–324. doi: https://doi.org/10.1016/j.powtec.2012.01.020
  7. Nakach, M., Authelin, J.-R., Corsini, C., Gianola, G. (2019). Jet milling industrialization of sticky active pharmaceutical ingredient using quality-by-design approach. Pharmaceutical Development and Technology, 24 (7), 849–863. doi: https://doi.org/10.1080/10837450.2019.1608449
  8. Ivanov, A. A., Gorobets, V. I. (1974). A. s. No. 324069. Sposob avtomaticheskogo regulirovaniya protsessa izmel'cheniya v protivotochnoy gazostruynoy mel'nitse. No. 1876232/29-33; declareted: 24.01.1974; published: 15.10.1974, Bul. No. 38.
  9. Ivanov, A. A. et. al. (1972). Sposob avtomaticheskogo regulirovaniya protsessa gazostruynogo izmel'cheniya. A. s. No. 324069. Byull. izobr., 2, 17.
  10. Muzyka, L. V. (2016). Razrabotka avtomatizirovannoy sistemy upravleniya rabotoy struynoy izmel'chitel'noy ustanovki. Zbahachennia korysnykh kopalyn, 63 (104). Available at: http://ir.nmu.org.ua/handle/123456789/151422
  11. Hludeev, V. I., Uvarov, V. A., Karpachev, D. V., Yarygin, A. A. (2005). Pat. No. 49736 RF. Struynaya mel'nitsa s samofuteruyushcheysya kameroy pomola. published: 10.12.2005.
  12. Zhang, Z., Lin, J., Tao, Y., Guo, Q., Zuo, J., Lu, B. et. al. (2018). A supersonic target jet mill based on the entrainment of annular supersonic flow. Review of Scientific Instruments, 89 (8), 085104. doi: https://doi.org/10.1063/1.5039589
  13. Bogdanov, V. S., Uvarov, V. A., Bulgakov, S. B., Karpachev, D. V., Shopina, E. V. (2000). Pat. No. 2188077 RF. Countercurrent-type jet mill. No. 2000128609/03; declareted: 16.11.2000; published: 27.08.2002. Available at: https://www.elibrary.ru/item.asp?id=37892874
  14. Serebryanik, I. A., Zolotuhina, D. A. (2014). Razvitie struynogo izmel'cheniya. Materialy konferentsii posvyashchennoy 115-letiyu Natsional'nogo gornogo universiteta «Razvitie informatsionno-resursnogo obespecheniya obrazovaniya i nauki v gorno-metallurgicheskoy otrasli i transporte 2014». Dnepr. Available at: http://sci-forum.net.ua/index.php/ru/konferentsii/arkhiv2/35-materialy-dirpsemmts-2014
  15. Akunov, V. I. (1995). Sovremennoe sostoyanie i tendentsii sovershenstvovaniya molotkovyh drobilok i mel'nits. Stroitel'nye i dorozhnye mashiny, 1, 11–13.
  16. Akunov, V. I. (1967). Struynye mel'nitsy. Moscow: Mashinostroenie, 263.
  17. Postnikova, I., Blinichev, V., Krawczyk, J. (2015). Jet mills. Sovremennye naukoemkie tehnologii. Regional'noe prilozhenie, 2 (42), 144–151. Available at: https://www.isuct.ru/e-publ/snt/sites/ru.e-publ.snt/files/2015/02/snt_2015_n02-144.pdf
  18. Gorobets, L. Zh. (1995). Fizicheskie osnovy prognozirovaniya tehnologii izmel'cheniya. Obogashchenie rud, 4-5, 19–23.
  19. Gorobets, L. Zh., Bovenko, V. N., Verhorobina, I. V. (1991). Issledovanie sinergeticheskih effektov v protsesse dispergirovaniya neodnorodnyh tverdyh sred. V kn. Sinergetika. Novye tehnologii polucheniya i svoystva metallicheskih materialov. Мoscow, 146.
  20. Gorobets, L. Zh., Verhorobina, I. V. (2003). Rezul'taty akustoemissionnogo monitoringa effekta dispergirovaniya. Obogashchenie poleznyh iskopaemyh, 18 (59), 41–47.
  21. Gorobets, L. J., Verhorobina, I. V. (2017). Transformation of energy on the stage of dispergating of geological environment at ladening. Geotehnicheskaya mehanika, 136, 101–115. Available at: http://dspace.nbuv.gov.ua/handle/123456789/158618
  22. Pilov, P. I., Gorobets, L. Zh., Bovenko, V. N., Shcherbakov, A. E., Pryadko, N. S., Verhorobina, I. V. (2007). Parametry akusticheskogo izlucheniya promyshlennoy gazostruynoy ustanovki. Visnyk nats. tekhn. universyteta «KhPI», 27, 33–41.
  23. Gorobets, L. Zh. (2003). Novye predstavleniya o prirode i mehanizme protsessa izmel'cheniya. Obogashchenie poleznyh iskopaemyh, 18 (59), 51–55.
  24. Bovenko, V. N., Polunin, V. I. (1976). A. s. No. 512602 SSSR. Aperiodicheskiy datchik dlya registratsii akusticheskih signalov. No. 2071267; declareted: 30.10.1974; published: 30.04.1976.
  25. Marasanow, V. V., Sharko, A. A., Koberesky, V. V. (2016). Analysis of mechanisms origin acoustic emission signals at dynamic ladening of solids. Visnyk Khersonskoho natsionalnoho tekhnichnoho universytetu, 2 (57), 60–65.
  26. Sokur, M., Biletskyi, V., Sokur, L., Bozhyk, D., Sokur, I. (2016). Investigation of the process of crushing solid materials in the centrifugal disintegrators. Eastern-European Journal of Enterprise Technologies, 3 (7 (81)), 34–40. doi: https://doi.org/10.15587/1729-4061.2016.71983
  27. Sokur, M. I., Sokur, L. M., Sokur, I. M. (2014). Development and research of centrifugal crusher with damping hydrostatic buttress of accelerating rotor. Visnyk NTU «KhPI». Serіes: Khimiya, khimichna tekhnolohiya ta ecolohiya, 52 (1094), 130–137.
  28. Sokur, M. I., Kiyanovskyi, M. V., Vorobiov, O. M., Sokur, L. M., Sokur, I. M (2014). Dezintehratsiya mineralnykh resursiv. Kremenchuk: vydavnytstvo PP Shcherbatykh O. V., 304.

Downloads

Published

2020-12-31

How to Cite

Gorobets, L., Verkhorobina, I., Biletsky, V., Kryvenko, A., Hryshchenko, M., & Bulakh, O. (2020). Identification of factors to reduce the energy costs of dispersing in jets. Eastern-European Journal of Enterprise Technologies, 6(1 (108), 55–62. https://doi.org/10.15587/1729-4061.2020.217253

Issue

Section

Engineering technological systems