Identification of factors to reduce the energy costs of dispersing in jets
DOI:
https://doi.org/10.15587/1729-4061.2020.217253Keywords:
jet mill, dispersion, dispersing, energy carrier temperature, solid-phase concentration, acoustic activityAbstract
This paper reports the operational indicators for industrial-sized jet grinding plants (JGP). The dependences of specific energy consumption on productivity have been generalized. The technological patterns in the working process were considered in terms of reducing energy costs using the operation of gas-jet and steam-jet mills at the Vilnohirsk Mining and Metallurgical Plant (VMMP) involved in crushing zircon to 60 µm as an example. The acoustic activity in the grinding area has been studied relative to the concentration of μ and in combination with the technological assessment of the mill’s performance. A broadband piezo sensor was used in the assessment of acoustic emission (AE). It is shown that the acoustic activity of the grinding zone contains information about the effects of dispersion and energy costs for grinding, which makes it possible to estimate and minimize the specific energy costs. It has been established that the principal factors of JGP energy intensity are the initial temperature of the energy carrier, which sets the speed of the jet, and the concentration of solid phase in the jet, which changes the effects of dispersing. A technique has been proposed for the current assessment of energy costs in the working process of dispersion based on the experimental acoustic data and a pattern of the acoustic dimensional effect. The estimated acoustic indicators of the energy cost of a jet mill for the conditions of VMMP were derived. To reduce the energy cost of dispersion (γs@0.42 J/cm2), the effect of adjusting the loading of jets to γN@1.8 J/pulse is employed. Thus, this study has investigated the dispersal of solid loose material in jets with the involvement of acoustic information about the operation of jet mills, which makes it possible to comprehensively assess and minimize (optimize) the specific energy costs of grindingReferences
- Gorobets, L. Zh. (1999). Mikroporoshki: tehnologiya i oborudovanie. Zbahachennia korysnykh kopalyn, 4 (45), 33–41.
- Gorobets, V. I., Gorobets, L. Zh. (1977). Novoe napravlenie rabot po izmel'cheniyu. Moscow: Nedra, 182.
- Gorobets, L. Zh. (2004). Razvitie nauchnyh osnov izmel'cheniya tverdyh poleznyh iskopaemyh. Dnepropetrovsk, 35.
- Biletskyi, V. S. (Ed.) (2007). Mala hirnycha entsyklopediya. Vol. 2. Donetsk: Donbas, 141.
- Llorente, A., Serrano, B., Baselga, J., Gedler, G., Ozisik, R. (2019). Jet Milling as an Alternative Processing Technique for Preparing Polysulfone Hard Nanocomposites. Advances in Materials Science and Engineering, 2019, 1–8. doi: https://doi.org/10.1155/2019/3501402
- Ghambari, M., Emadi Shaibani, M., Eshraghi, N. (2012). Production of grey cast iron powder via target jet milling. Powder Technology, 221, 318–324. doi: https://doi.org/10.1016/j.powtec.2012.01.020
- Nakach, M., Authelin, J.-R., Corsini, C., Gianola, G. (2019). Jet milling industrialization of sticky active pharmaceutical ingredient using quality-by-design approach. Pharmaceutical Development and Technology, 24 (7), 849–863. doi: https://doi.org/10.1080/10837450.2019.1608449
- Ivanov, A. A., Gorobets, V. I. (1974). A. s. No. 324069. Sposob avtomaticheskogo regulirovaniya protsessa izmel'cheniya v protivotochnoy gazostruynoy mel'nitse. No. 1876232/29-33; declareted: 24.01.1974; published: 15.10.1974, Bul. No. 38.
- Ivanov, A. A. et. al. (1972). Sposob avtomaticheskogo regulirovaniya protsessa gazostruynogo izmel'cheniya. A. s. No. 324069. Byull. izobr., 2, 17.
- Muzyka, L. V. (2016). Razrabotka avtomatizirovannoy sistemy upravleniya rabotoy struynoy izmel'chitel'noy ustanovki. Zbahachennia korysnykh kopalyn, 63 (104). Available at: http://ir.nmu.org.ua/handle/123456789/151422
- Hludeev, V. I., Uvarov, V. A., Karpachev, D. V., Yarygin, A. A. (2005). Pat. No. 49736 RF. Struynaya mel'nitsa s samofuteruyushcheysya kameroy pomola. published: 10.12.2005.
- Zhang, Z., Lin, J., Tao, Y., Guo, Q., Zuo, J., Lu, B. et. al. (2018). A supersonic target jet mill based on the entrainment of annular supersonic flow. Review of Scientific Instruments, 89 (8), 085104. doi: https://doi.org/10.1063/1.5039589
- Bogdanov, V. S., Uvarov, V. A., Bulgakov, S. B., Karpachev, D. V., Shopina, E. V. (2000). Pat. No. 2188077 RF. Countercurrent-type jet mill. No. 2000128609/03; declareted: 16.11.2000; published: 27.08.2002. Available at: https://www.elibrary.ru/item.asp?id=37892874
- Serebryanik, I. A., Zolotuhina, D. A. (2014). Razvitie struynogo izmel'cheniya. Materialy konferentsii posvyashchennoy 115-letiyu Natsional'nogo gornogo universiteta «Razvitie informatsionno-resursnogo obespecheniya obrazovaniya i nauki v gorno-metallurgicheskoy otrasli i transporte 2014». Dnepr. Available at: http://sci-forum.net.ua/index.php/ru/konferentsii/arkhiv2/35-materialy-dirpsemmts-2014
- Akunov, V. I. (1995). Sovremennoe sostoyanie i tendentsii sovershenstvovaniya molotkovyh drobilok i mel'nits. Stroitel'nye i dorozhnye mashiny, 1, 11–13.
- Akunov, V. I. (1967). Struynye mel'nitsy. Moscow: Mashinostroenie, 263.
- Postnikova, I., Blinichev, V., Krawczyk, J. (2015). Jet mills. Sovremennye naukoemkie tehnologii. Regional'noe prilozhenie, 2 (42), 144–151. Available at: https://www.isuct.ru/e-publ/snt/sites/ru.e-publ.snt/files/2015/02/snt_2015_n02-144.pdf
- Gorobets, L. Zh. (1995). Fizicheskie osnovy prognozirovaniya tehnologii izmel'cheniya. Obogashchenie rud, 4-5, 19–23.
- Gorobets, L. Zh., Bovenko, V. N., Verhorobina, I. V. (1991). Issledovanie sinergeticheskih effektov v protsesse dispergirovaniya neodnorodnyh tverdyh sred. V kn. Sinergetika. Novye tehnologii polucheniya i svoystva metallicheskih materialov. Мoscow, 146.
- Gorobets, L. Zh., Verhorobina, I. V. (2003). Rezul'taty akustoemissionnogo monitoringa effekta dispergirovaniya. Obogashchenie poleznyh iskopaemyh, 18 (59), 41–47.
- Gorobets, L. J., Verhorobina, I. V. (2017). Transformation of energy on the stage of dispergating of geological environment at ladening. Geotehnicheskaya mehanika, 136, 101–115. Available at: http://dspace.nbuv.gov.ua/handle/123456789/158618
- Pilov, P. I., Gorobets, L. Zh., Bovenko, V. N., Shcherbakov, A. E., Pryadko, N. S., Verhorobina, I. V. (2007). Parametry akusticheskogo izlucheniya promyshlennoy gazostruynoy ustanovki. Visnyk nats. tekhn. universyteta «KhPI», 27, 33–41.
- Gorobets, L. Zh. (2003). Novye predstavleniya o prirode i mehanizme protsessa izmel'cheniya. Obogashchenie poleznyh iskopaemyh, 18 (59), 51–55.
- Bovenko, V. N., Polunin, V. I. (1976). A. s. No. 512602 SSSR. Aperiodicheskiy datchik dlya registratsii akusticheskih signalov. No. 2071267; declareted: 30.10.1974; published: 30.04.1976.
- Marasanow, V. V., Sharko, A. A., Koberesky, V. V. (2016). Analysis of mechanisms origin acoustic emission signals at dynamic ladening of solids. Visnyk Khersonskoho natsionalnoho tekhnichnoho universytetu, 2 (57), 60–65.
- Sokur, M., Biletskyi, V., Sokur, L., Bozhyk, D., Sokur, I. (2016). Investigation of the process of crushing solid materials in the centrifugal disintegrators. Eastern-European Journal of Enterprise Technologies, 3 (7 (81)), 34–40. doi: https://doi.org/10.15587/1729-4061.2016.71983
- Sokur, M. I., Sokur, L. M., Sokur, I. M. (2014). Development and research of centrifugal crusher with damping hydrostatic buttress of accelerating rotor. Visnyk NTU «KhPI». Serіes: Khimiya, khimichna tekhnolohiya ta ecolohiya, 52 (1094), 130–137.
- Sokur, M. I., Kiyanovskyi, M. V., Vorobiov, O. M., Sokur, L. M., Sokur, I. M (2014). Dezintehratsiya mineralnykh resursiv. Kremenchuk: vydavnytstvo PP Shcherbatykh O. V., 304.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Larisa Gorobets, Inna Verkhorobina, Volodymyr Biletsky, Andrii Kryvenko, Mykhailo Hryshchenko, Oleksij Bulakh
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.