Decomposition of ferronickel slag through alkali fusion in the roasting process

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.217579

Keywords:

ferronickel, slag, alkali fusion, roasting, thermal, decomposition, Na2CO3, olivine, aluminum, chromium, iron, magnesium

Abstract

Ferronickel slag is a by-product of the nickel smelting process. Recycling of ferronickel slag is required since it contains valuable elements besides its potency to pollute the environment. In order to take advantage of the valuable materials and reducing the potential hazard, beneficiation of ferronickel slag is essential. Alkali fusion of ferronickel slag using Na2CO3 in the roasting process was carried out. This study aims to determine the decomposition of the mixture of ferronickel slag-Na2CO3 in the roasting process. Roasting temperature and time were 800–1,000 °C and 60‒240 minutes, respectively. Characterizations of the ferronickel slag were conducted by XRF, ICP-OES, XRD and SEM-EDS. Meanwhile, roasted products were characterized using ICP-OES, XRD and SEM-EDS. Characterization of the ferronickel slag indicates that Mg and Si are the main elements followed by Fe, Al and Cr. Moreover, olivine is detected as the main phase. The roasting process caused percent weight loss of the roasted products, which indicates decomposition occurred and affected the elements content, phases and morphology. The roasting process at about 900 °C for 60 minutes is a preferable decomposition base on the process conditions applied and the change of elements content. Aluminum (Al) and chromium (Cr) content in the roasted products upgraded significantly compared to iron (Fe) and magnesium (Mg) content. Olivine phase transforms to some phases, which were bounded with the sodium compound such as Na2MgSiO4, Na4SiO4 and Na2CrO4. The rough layer is observed on the surface of the roasted product as a result of the decomposition process. It indicates that liquid-solid mass transfer is initiated from the surface

Supporting Agency

  • The Ministry of Research and Technology/ National Research and Innovation Agency of Indonesia

Author Biographies

Wahyu Mayangsari, Universitas Indonesia; Indonesia Institute of Sciences

Master of Engineering

Department of Metallurgy and Material Engineering

Research Centre for Metallurgy and Material

Isma Nur Avifah, Universitas Sebelas Maret

Bachelor of Science

Depatement of Chemistry

Agus Budi Prasetyo, Indonesia Institute of Sciences

Doctor of Engineering

Research Centre for Metallurgy and Material

Eni Febriana, Indonesia Institute of Sciences

Master of Science

Research Centre for Metallurgy and Material

Ahmad Maksum, Politeknik Negeri Jakarta

Doctor of Engineering

Department of Mechanical Engineering

Reza Miftahul Ulum, Universitas Indonesia

Doctor of Engineering

Department of Metallurgy and Material Engineering

Florentinus Firdiyono, Indonesia Institute of Sciences

Doctor of Engineering, Professor

Research Centre for Metallurgy and Material

Rudi Subagja, Indonesia Institute of Sciences

Doctor of Engineering

Research Centre for Metallurgy and Material

Johny Wahyuadi Soedarsono, Universitas Indonesia

Doctor of Engineering, Professor

Department of Metallurgy and Material Engineering

References

  1. Sagadin, C., Luidold, S., Wagner, C., Wenzl, C. (2016). Melting Behaviour of Ferronickel Slags. JOM, 68 (12), 3022–3028. doi: https://doi.org/10.1007/s11837-016-2140-6
  2. Fernández-Jiménez, A., Arbi, K., Palomo, A. (2014). Alkali-activated slag cements: Blast furnace versus ferronickel slag. 34th Cement and Concrete Science Conference, 203–206.
  3. Maragkos, I., Giannopoulou, I. P., Panias, D. (2009). Synthesis of ferronickel slag-based geopolymers. Minerals Engineering, 22 (2), 196–203. doi: https://doi.org/10.1016/j.mineng.2008.07.003
  4. Gu, F., Zhang, Y., Peng, Z., Su, Z., Tang, H., Tian, W. et. al. (2019). Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching. Journal of Hazardous Materials, 374, 83–91. doi: https://doi.org/10.1016/j.jhazmat.2019.04.002
  5. Prasetyo, A. B., Maksum, A., Soedarsono, J. W., Firdiyono, F. (2019). Thermal characteristics of ferronickel slag on roasting process with addition of sodium carbonate (Na2CO3). IOP Conference Series: Materials Science and Engineering, 541, 012037. doi: https://doi.org/10.1088/1757-899x/541/1/012037
  6. Huang, Y., Wang, Q., Shi, M. (2017). Characteristics and reactivity of ferronickel slag powder. Construction and Building Materials, 156, 773–789. doi: https://doi.org/10.1016/j.conbuildmat.2017.09.038
  7. Fang, D., Xue, J., Xuan, L. (2018). Recycling SiO2 and Al2O3 from the Laterite Nickel Slag in Molten Sodium Hydroxides. 9th International Symposium on High-Temperature Metallurgical Processing, 245–257. doi: https://doi.org/10.1007/978-3-319-72138-5_25
  8. Guo, Z., Zhu, D., Pan, J., Zhang, F. (2017). Mineralogical Characteristics and Preliminary Beneficiation of Nickel Slag from Reduction Roasting-Ammonia Leaching. Minerals, 7 (6), 98. doi: https://doi.org/10.3390/min7060098
  9. Tangahu, B. V., Warmadewanthi, I., Saptarini, D., Pudjiastuti, L., Tardan, M. A. M., Luqman, A. (2015). Ferronickel Slag Performance from Reclamation Area in Pomalaa, Southeast Sulawesi, Indonesia. Advances in Chemical Engineering and Science, 05 (03), 408–412. doi: https://doi.org/10.4236/aces.2015.53041
  10. Demotica, J. S., Jr., R. F. A., Malaluan, R. M., Demayo, C. G. (2012). Characterization and Leaching Assessment of Ferronickel Slag from a Smelting Plant in Iligan City, Philippines. International Journal of Environmental Science and Development, 3 (5), 470–474. doi: https://doi.org/10.7763/ijesd.2012.v3.269
  11. Kang, S., Park, K., Kim, D. (2014). Potential Soil Contamination in Areas Where Ferronickel Slag Is Used for Reclamation Work. Materials, 7 (10), 7157–7172. doi: https://doi.org/10.3390/ma7107157
  12. Xi, B., Li, R., Zhao, X., Dang, Q., Zhang, D., Tan, W. (2018). Constraints and opportunities for the recycling of growing ferronickel slag in China. Resources, Conservation and Recycling, 139, 15–16. doi: https://doi.org/10.1016/j.resconrec.2018.08.002
  13. Kuck, P. H. (2015). Nickel. U.S. Geological Survey, Mineral Commodity Summaries, 108–109. Available at: https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-pubs/nickel/mcs-2015-nicke.pdf
  14. Kuck, P. H. (2016). Nickel. U.S. Geological Survey, Mineral Commodity Summaries, 114–115. Available at: https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-pubs/nickel/mcs-2016-nicke.pdf
  15. Schnebele, E. K. (2017). Nickel. U.S. Geological Survey, Mineral Commodity Summaries, 114–115. Available at: https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-pubs/nickel/mcs-2017-nicke.pdf
  16. McRae, M. E. (2018). Nickel. U.S. Geological Survey, Mineral Commodity Summaries, 112–113. Available at: https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-pubs/nickel/mcs-2018-nicke.pdf
  17. Mufakhir, F. R., Mubarok, M. Z., Ichlas, Z. T. (2018). Leaching of silicon from ferronickel (FeNi) smelting slag with sodium hydroxide solution at atmospheric pressure. IOP Conference Series: Materials Science and Engineering, 285, 012003. doi: https://doi.org/10.1088/1757-899x/285/1/012003
  18. Patrick, J., Prasetyo, A. B., Munir, B., Maksum, A., Soedarsono, J. W. (2018). The effect of addition of sodium sulphate (Na2SO4) to nickel slag pyrometallurgical process with temperature and additives ratio as variables. E3S Web of Conferences, 67, 03053. doi: https://doi.org/10.1051/e3sconf/20186703053
  19. Pangaribuan, R. H., Patrick, J., Prasetyo, A. B., Maksum, A., Munir, B., Soedarsono, J. W. (2018). The effect of NaOH (natrium hydroxide) to slag nickel pyrometallurgy in different temperature and additive ratio. E3S Web of Conferences, 67, 03052. doi: https://doi.org/10.1051/e3sconf/20186703052
  20. Gu, F., Peng, Z., Zhang, Y., Tang, H., Ye, L., Tian, W. et. al. (2019). Thermodynamic Characteristics of Ferronickel Slag Sintered in the Presence of Magnesia. Characterization of Minerals, Metals, and Materials 2019, 379–388. doi: https://doi.org/10.1007/978-3-030-05749-7_38
  21. Zhang, X., Gu, F., Peng, Z., Wang, L., Tang, H., Rao, M. et. al. (2019). Recovering Magnesium from Ferronickel Slag by Vacuum Reduction: Thermodynamic Analysis and Experimental Verification. ACS Omega, 4 (14), 16062–16067. doi: https://doi.org/10.1021/acsomega.9b02262
  22. Peng, Z., Wang, L., Gu, F., Tang, H., Rao, M., Zhang, Y. et. al. (2020). Recovery of chromium from ferronickel slag: A comparison of microwave roasting and conventional roasting strategies. Powder Technology, 372, 578–584. doi: https://doi.org/10.1016/j.powtec.2020.05.103
  23. Prasetyo, A. B., Darmawansyah, R., Mayangsari, W., Febriana, E., Permana, S., Maksum, A. et. al. (2020). Reverse leaching of magnesium from ferronickel slag using alkali solvent NaOH. Eastern-European Journal of Enterprise Technologies, 1 (12 (103)), 6–14. doi: https://doi.org/10.15587/1729-4061.2020.193885
  24. Alfariz, M. D., Mayangsari, W., Prasetyo, A. B., Maksum, A., Prasetyo, T., Ulum, R. M., Soedarsono, J. W. (2020). Effect of sodium carbonate (Na2CO3) additives and palm kernel shell charcoal to increase nickel and iron content from ferronickel slag using the pyrometallurgical method. AIP Conference Proceedings. doi: https://doi.org/10.1063/5.0014052
  25. Liu, R., Zhai, Q., Wang, C., Li, X., Sun, W. (2020). Optimizing the Crystalline State of Cu Slag by Na2CO3 to Improve Cu Recovery by Flotation. Minerals, 10 (9), 820. doi: https://doi.org/10.3390/min10090820
  26. Zhu, Z., You, J., Zhang, X., Wang, J., Duan, J., Zhang, T. et. al. (2020). Estimation of Thermodynamic Properties of Sodium Magnesium Silicates by the Polyhedron Method. The Minerals, Metals & Materials Series, 215–226. doi: https://doi.org/10.1007/978-3-030-36540-0_20
  27. Mubarok, M. Z., Yudiarto, A. (2017). Synthesis of Magnesium Oxide from Ferronickel Smelting Slag Through Hydrochloric Acid Leaching-Precipitation and Calcination. Energy Technology 2017, 247–258. doi: https://doi.org/10.1007/978-3-319-52192-3_24

Downloads

Published

2021-04-30

How to Cite

Mayangsari, W., Avifah, I. N., Prasetyo, A. B., Febriana, E., Maksum, A., Ulum, R. M., Firdiyono, F., Subagja, R., & Soedarsono, J. W. (2021). Decomposition of ferronickel slag through alkali fusion in the roasting process. Eastern-European Journal of Enterprise Technologies, 2(12 (110), 44–51. https://doi.org/10.15587/1729-4061.2021.217579

Issue

Section

Materials Science