Identification of regularities of formation of the phase-structural state and properties of coatings obtained by micro-arc oxidation of high-strength V95 alloy

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.217691

Keywords:

micro-arc oxidation, anode-cathode mode, electrolyte composition, Al–Zn–Mg–Cu, thickness, phase composition, hardness

Abstract

The influence of electrolyte composition and electrolysis modes on the surface morphology, growth kinetics, phase-structural state, and mechanical properties of MAO coatings on the V95 aluminum alloy (with Zn as the main alloying element) was studied. The possibility of forming a continuous MAO coating on the V95 alloy with a base layer thickness of more than 100 μm and a surface roughness of less than 5 μm was found. The study of the growth kinetics of MAO coatings on the V95 alloy showed that the highest growth rate of the base coating layer (about 0.83 μm/min) occurs in the 1 g/L KOH+6 g/L Na2SiO3 electrolyte. Although an increase in the relative content of the silicate component (Na2SiO3) provides a fairly high growth rate of the coating, the growth rate of the base layer remains rather low (0.38–0.40 µm/min). This makes the oxidation process in these electrolytes less technological.

The study of the phase-structural state of the base coating layer showed that it has a crystalline structure, in which the main phase is aluminum oxide γ–Al2O3 (90–97 %). Crystallites of α-Al2O3 and mullite (3Al2O3∙2SiO2) are formed as the second phase. With an increase in process time in electrolytes with the highest relative content of the alkaline component (1 g/L KOH+6 g/L Na2SiO3), the relative content of the hardest α-Al2O3 phase increases (up to 5 %). The hardness of such coatings with an oxidation time of 180 minutes reaches 14,000 MPa. Thus, the study has shown the advisability of using MAO treatment for the V95 alloy, since it can significantly increase the surface hardness and thereby guarantee its high wear resistance. The combination of high hardness with a relatively high coating growth rate makes it possible to recommend oxidation in the 1 g/L KOH and 6 g/L Na2SiO3 electrolyte as the most technologically advanced for improving the mechanical characteristics of the surface of products made of V95 alloy

Author Biographies

Valeria Subbotinа, National Technical University "Kharkiv Polytechnic Institute" Kirpichova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Materials Science

Oleg Sоbоl, National Technical University "Kharkiv Polytechnic Institute" Kirpichova str., 2, Kharkiv, Ukraine, 61002

Doctor of Physical and Mathematical Sciences, Professor

Department of Materials Science

Valery Belozerov, National Technical University "Kharkiv Polytechnic Institute" Kirpichova str., 2, Kharkiv, Ukraine, 61002

PhD, Professor

Department of Materials Science

References

  1. Hlushkova, D. B., Ryzhkov, Y. V., Kostina, L. L., Demchenko, S. V. (2018). Increase of wear resistance of the critical parts of hydraulic hammer by means of ion-plasma treatment. Problems of Atomic Science and Technology, 1 (113), 208–211.
  2. Fedirko, V. М., Pohrelyuk, І. М., Luk’yanenko, О. H., Lavrys’, S. М., Kindrachuk, М. V., Dukhota, О. І. et. al. (2018). Thermodiffusion Saturation of the Surface of VT22 Titanium Alloy from a Controlled Oxygen–Nitrogen-Containing Atmosphere in the Stage of Aging. Materials Science, 53 (5), 691–701. doi: https://doi.org/10.1007/s11003-018-0125-z
  3. Sobol, O. V., Postelnyk, A. A., Meylekhov, A. A., Andreev, A. A., Stolbovoy, V. A., Gorban, V. F. (2017). Structural Engineering of the Multilayer Vacuum Arc Nitride Coatings Based on Ti, Cr, Mo and Zr. Journal of Nano- and Electronic Physics, 9 (3), 03003-1–03003-6. doi: https://doi.org/10.21272/jnep.9(3).03003
  4. Glushchenko, M. A., Belozyorov, V. V., Sobol, O. V., Subbotina, V. V., Zelenskaya, G. I. (2017). Effect of Tantalum on the Texture of Copper Vacuum Condensates. Journal of Nano- and Electronic Physics, 9 (2), 02015-1–02015-5. doi: https://doi.org/10.21272/jnep.9(2).02015
  5. Mayrhofer, P. H., Mitterer, C., Hultman, L., Clemens, H. (2006). Microstructural design of hard coatings. Progress in Materials Science, 51 (8), 1032–1114. doi: https://doi.org/10.1016/j.pmatsci.2006.02.002
  6. Sobol, O. V., Andreev, A. A., Gorban, V. F., Meylekhov, A. A., Postelnyk, H. O., Stolbovoy, V. A. (2016). Structural engineering of the vacuum Arc ZrN/CrN multilayer coatings. Journal of nano- and electronic physics, 8 (1), 01042-1–01042-5. doi: https://doi.org/10.21272/jnep.8(1).01042
  7. Rocha, R. C., Galdino, A. G. de S., Silva, S. N. da, Machado, M. L. P. (2018). Surface, microstructural, and adhesion strength investigations of a bioactive hydroxyapatite-titanium oxide ceramic coating applied to Ti-6Al-4V alloys by plasma thermal spraying. Materials Research, 21 (4). doi: https://doi.org/10.1590/1980-5373-mr-2017-1144
  8. Bekkara, M. F., Dascalescu, L., Benmimoun, Y., Zeghloul, T., Tilmatine, A., Zouzou, N. (2018). Modification of surface characteristic and tribo-electric properties of polymers by DBD plasma in atmospheric air. The European Physical Journal Applied Physics, 81 (1), 10801. doi: https://doi.org/10.1051/epjap/2017170149
  9. Wei, C. C. (2012). Analyses of Material Properties of Nitrided AISI M2 Steel Treated by Plasma Immersion Ion Implantation (PIII) Process. Advanced Science Letters, 12 (1), 148–154. doi: https://doi.org/10.1166/asl.2012.2807
  10. Sobol’, O. V., Andreev, A. A., Gorban’, V. F. (2016). Structural Engineering of Vacuum-ARC Multiperiod Coatings. Metal Science and Heat Treatment, 58 (1-2), 37–39. doi: https://doi.org/10.1007/s11041-016-9961-3
  11. Nii, H., Nishimoto, A. (2012). Surface modification of ferritic stainless steel by active screen plasma nitriding. Journal of Physics: Conference Series, 379, 012052. doi: https://doi.org/10.1088/1742-6596/379/1/012052
  12. Aydin, H., Bayram, A., Topçu, Ş. (2013). Friction Characteristics of Nitrided Layers on AISI 430 Ferritic Stainless Steel Obtained by Various Nitriding Processes. Materials Science, 19 (1). doi: https://doi.org/10.5755/j01.ms.19.1.3819
  13. Araújo, E. de, Bandeira, R. M., Manfrinato, M. D., Moreto, J. A., Borges, R., Vales, S. dos S. et. al. (2019). Effect of ionic plasma nitriding process on the corrosion and micro-abrasive wear behavior of AISI 316L austenitic and AISI 470 super-ferritic stainless steels. Journal of Materials Research and Technology, 8 (2), 2180–2191. doi: https://doi.org/10.1016/j.jmrt.2019.02.006
  14. Köster, K., Kaestner, P., Bräuer, G., Hoche, H., Troßmann, T., Oechsner, M. (2013). Material condition tailored to plasma nitriding process for ensuring corrosion and wear resistance of austenitic stainless steel. Surface and Coatings Technology, 228, S615–S618. doi: https://doi.org/10.1016/j.surfcoat.2011.10.059
  15. Sobol’, O. V., Meilekhov, A. A. (2018). Conditions of Attaining a Superhard State at a Critical Thickness of Nanolayers in Multiperiodic Vacuum-Arc Plasma Deposited Nitride Coatings. Technical Physics Letters, 44 (1), 63–66. doi: https://doi.org/10.1134/s1063785018010224
  16. Sun, Y., Chen, Y., Tsuji, N., Guan, S. (2020). Microstructural evolution and mechanical properties of nanostructured Cu/Ni multilayer fabricated by accumulative roll bonding. Journal of Alloys and Compounds, 819, 152956. doi: https://doi.org/10.1016/j.jallcom.2019.152956
  17. Nayak, B. K., Elchidana, P., Mohapatra, R., Sahu, P. K. (2016). Optimization of Coating Process by Using Design of Experiment and Thermodynamic Environment Equivalency Factor. Asian Journal of Chemistry, 28 (7), 1589–1594. doi: https://doi.org/10.14233/ajchem.2016.19764
  18. Sobol’, O. V., Andreev, A. A., Gorban’, V. F., Stolbovoy, V. A., Melekhov, A. A., Postelnyk, A. A. (2016). Possibilities of structural engineering in multilayer vacuum-arc ZrN/CrN coatings by varying the nanolayer thickness and application of a bias potential. Technical Physics, 61 (7), 1060–1063. doi: https://doi.org/10.1134/s1063784216070252
  19. Byeon, S. S., Wang, K., Seo, Y. J., Jung, Y. G., Koo, B. H. (2012). Structural properties of the oxide coatings prepared by electrolyte plasma process on the Al 2021 alloy in various nitrogen solutions. Ceramics International, 38, S665–S668. doi: https://doi.org/10.1016/j.ceramint.2011.05.131
  20. Subbotina, V. V., Sobol, O. V., Belozerov, V. V., Makhatilova, A. I., Shnayder, V. V. (2019). Use of the Method of Micro-arc Plasma Oxidation to Increase the Antifriction Properties of the Titanium Alloy Surface. Journal of Nano- and Electronic Physics, 11 (3), 03025-1–03025-5. doi: https://doi.org/10.21272/jnep.11(3).03025
  21. Dunleavy, C. S., Golosnoy, I. O., Curran, J. A., Clyne, T. W. (2009). Characterisation of discharge events during plasma electrolytic oxidation. Surface and Coatings Technology, 203 (22), 3410–3419. doi: https://doi.org/10.1016/j.surfcoat.2009.05.004
  22. Dunleavy, C. S., Curran, J. A., Clyne, T. W. (2011). Self-similar scaling of discharge events through PEO coatings on aluminium. Surface and Coatings Technology, 206 (6), 1051–1061. doi: https://doi.org/10.1016/j.surfcoat.2011.07.065
  23. Dunleavy, C. S., Curran, J. A., Clyne, T. W. (2013). Time dependent statistics of plasma discharge parameters during bulk AC plasma electrolytic oxidation of aluminium. Applied Surface Science, 268, 397–409. doi: https://doi.org/10.1016/j.apsusc.2012.12.109
  24. Nominé, A., Troughton, S. C., Nominé, A. V., Henrion, G., Clyne, T. W. (2015). High speed video evidence for localised discharge cascades during plasma electrolytic oxidation. Surface and Coatings Technology, 269, 125–130. doi: https://doi.org/10.1016/j.surfcoat.2015.01.043
  25. Arrabal, R., Matykina, E., Hashimoto, T., Skeldon, P., Thompson, G. E. (2009). Characterization of AC PEO coatings on magnesium alloys. Surface and Coatings Technology, 203 (16), 2207–2220. doi: https://doi.org/10.1016/j.surfcoat.2009.02.011
  26. Belozerov, V., Mahatilova, A., Sobol’, O., Subbotinа, V., Subbotin, A. (2017). Improvement of energy efficiency in the operation of a thermal reactor with submerged combustion apparatus through the cyclic input of energy. Eastern-European Journal of Enterprise Technologies, 2 (5 (86)), 39–43. doi: https://doi.org/10.15587/1729-4061.2017.96721
  27. Subbotinа, V., Al-Qawabeha, U. F., Belozerov, V., Sоbоl, O., Subbotin, A., Tabaza, T. A., Al-Qawabah, S. M. (2019). Determination of influence of electrolyte composition and impurities on the content of α-Al2O3 phase in MAO-coatings on aluminum. Eastern-European Journal of Enterprise Technologies, 6 (12 (102)), 6–13. doi: https://doi.org/10.15587/1729-4061.2019.185674
  28. Yuting, D., Zhiyang, L., Guofeng, M. (2020). The research progress on micro-arc oxidation of aluminum alloy. IOP Conference Series: Materials Science and Engineering, 729, 012055. doi: https://doi.org/10.1088/1757-899x/729/1/012055
  29. Durdu, S., Bayramoğlu, S., Demirtaş, A., Usta, M., Üçışık, A. H. (2013). Characterization of AZ31 Mg Alloy coated by plasma electrolytic oxidation. Vacuum, 88, 130–133. doi: https://doi.org/10.1016/j.vacuum.2012.01.009
  30. Belozerov, V., Sоbоl, O., Mahatilova, A., Subbotinа, V., Tabaza, T. A., Al-Qawabeha, U. F., Al-Qawabah, S. M. (2018). Effect of electrolysis regimes on the structure and properties of coatings on aluminum alloys formed by anode­cathode micro arc oxidation. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 43–47. doi: https://doi.org/10.15587/1729-4061.2018.121744
  31. Clyne, T. W., Troughton, S. C. (2018). A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. International Materials Reviews, 64 (3), 127–162. doi: https://doi.org/10.1080/09506608.2018.1466492
  32. Morais, P. J., Gomes, B., Santos, P., Gomes, M., Gradinger, R., Schnall, M. et. al. (2020). Characterisation of a High-Performance Al–Zn–Mg–Cu Alloy Designed for Wire Arc Additive Manufacturing. Materials, 13 (7), 1610. doi: https://doi.org/10.3390/ma13071610
  33. Li, J., Li, F., Ma, X., Li, J., Liang, S., Zhang, L. (2018). Effects of Heat Treatment on Microstructure and Mechanical Properties of an ECAPed Al- Zn- Mg- Cu Alloy. Advanced Engineering Materials, 20 (9), 1701155. doi: https://doi.org/10.1002/adem.201701155
  34. Stemper, L., Mitas, B., Kremmer, T., Otterbach, S., Uggowitzer, P. J., Pogatscher, S. (2019). Age-hardening of high pressure die casting AlMg alloys with Zn and combined Zn and Cu additions. Materials & Design, 181, 107927. doi: https://doi.org/10.1016/j.matdes.2019.107927
  35. Gloria, A., Montanari, R., Richetta, M., Varone, A. (2019). Alloys for Aeronautic Applications: State of the Art and Perspectives. Metals, 9 (6), 662. doi: https://doi.org/10.3390/met9060662
  36. Fridlyander, I. N. (2004). Alyuminievye splavy v aviaraketnoy i yadernoy tehnike. Vestnik Rossiyskoy Akademii Nauk, 74 (12), 1076–1081.
  37. Dos Santos, J. F., Staron, P., Fischer, T., Robson, J. D., Kostka, A., Colegrove, P. et. al. (2018). Understanding precipitate evolution during friction stir welding of Al-Zn-Mg-Cu alloy through in-situ measurement coupled with simulation. Acta Materialia, 148, 163–172. doi: https://doi.org/10.1016/j.actamat.2018.01.020
  38. Suminov, I. V., Epel'fel'd, A. V., Lyudin, V. B., Borisov, A. M., Krit, B. L. (2001). Mikrodugovoe oksidirovanie (obzor). Pribory, 9, 13–23.
  39. Subbotinа, V., Sоbоl, O., Belozerov, V., Al-Qawabeha, U. F., Tabaza, T. A., Al-Qawabah, S. M., Shnayder, V. (2020). A study of the electrolyte composition influence on the structure and properties of MAO coatings formed on AMg6 alloy. Eastern-European Journal of Enterprise Technologies, 3 (12 (105)), 6–14. doi: https://doi.org/10.15587/1729-4061.2020.205474
  40. Subbotina, V. V., Al-Qawabeha, U. F., Sobol', O. V., Belozerov, V. V., Schneider, V. V., Tabaza, T. A., Al-Qawabah, S. M. (2019). Increase of the α-Al203 phase content in MAO-coating by optimizing the composition of oxidated aluminum alloy. Functional Materials, 26 (4), 752–758. doi: https://doi.org/10.15407/fm26.04.752
  41. Sobol’, O. V., Shovkoplyas, O. A. (2013). On advantages of X-ray schemes with orthogonal diffraction vectors for studying the structural state of ion-plasma coatings. Technical Physics Letters, 39 (6), 536–539. doi: https://doi.org/10.1134/s1063785013060126
  42. Klopotov, A. A., Abzaev, Yu. A., Potekaev, A. I., Volokitin, O. G. (2012). Osnovy rentgenostrukturnogo analiza v materialovedenii. Tomsk: Izd-vo TGASU, 275.
  43. Suminov, I. V., Belkin, P. N., Epel'fel'd, A. V., Lyudin, V. B., Krit, B. L., Borisov, A. M. (2011). Plazmenno-elektroliticheskoe modifitsirovanie poverhnosti metallov i splavov. Vol. 2. Moscow: Tehnosfera, 512.
  44. Loyola, C., Menéndez-Proupin, E., Gutiérrez, G. (2010). Atomistic study of vibrational properties of γ-Al2O3. Journal of Materials Science, 45 (18), 5094–5100. doi: https://doi.org/10.1007/s10853-010-4477-5
  45. Prins, R. (2019). Positionen von Spinellfehlstellen in γ‐Al2O3. Angewandte Chemie, 131 (43), 15694–15698. doi: https://doi.org/10.1002/ange.201901497

Downloads

Published

2020-12-31

How to Cite

Subbotinа V., Sоbоl O., & Belozerov, V. (2020). Identification of regularities of formation of the phase-structural state and properties of coatings obtained by micro-arc oxidation of high-strength V95 alloy. Eastern-European Journal of Enterprise Technologies, 6(12 (108), 45–54. https://doi.org/10.15587/1729-4061.2020.217691

Issue

Section

Materials Science