Estimating the indivisible error detecting сodes based on an average probability method

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.218076

Keywords:

average probability method, indivisible code, error-detecting code, undetectable error, reliability

Abstract

Given the need to improve the efficiency of data transfer, there are requirements to ensure their reliability and quality under interference. One way to improve data transfer efficiency is to use noise-resistant codes, which include a closed-form expression of the Fibonacci code, a parity code, and a permanent weight code. The result of applying these types of coding produces interference-resistant end-to-end processing and transmission of information, which is a promising approach to improving the efficiency of telecommunications systems in today's environment. This paper reports the estimation of the error detecting code capability of the Fibonacci code in a closed-form expression, as well as its comparative characteristic with a parity code and a permanent weight code for a binary symmetrical channel without memory. To assess an error detecting capability of the Fibonacci code in a closed-form expression, the probability of Fibonacci code combinations moving to the proper, allowable, and prohibited classes has been determined. The comparative characteristic of the indivisible error-detecting codes is based on an average probability method, for the criterion of an undetectable error probability, employing the MATLAB and Python software. The method has demonstrated the simplicity, versatility, and reliability of estimation, which is close to reality. The probability of an undetectable error in the Fibonacci code in a closed-form expression is V=5×10-7; in a code with parity check, V=7.7×10-15; and in a permanent weight code, V=1.9×10-15, at p10=3×10- 9. The use of the average probability method makes it possible to effectively use indivisible codes for detecting errors in telecommunications systems

Author Biographies

Oleksiy Borysenko, Sumy State University Rymskoho-Korsakova str., 2, Sumy, Ukraine, 40007

Doctor of Technical Sciences, Professor

Department of Electronics and Computer Technics

Svitlana Matsenko, Sumy State University Rymskoho-Korsakova str., 2, Sumy, Ukraine, 40007 Riga Technical University Azenes str., 12, Riga, Latvia, LV-1048

PhD, Leading Researcher

Department of Electronics and Computer Technics

Communication Technologies Research Center

Anatolii Novhorodtsev, Sumy State University Rymskoho-Korsakova str., 2, Sumy, Ukraine, 40007

PhD, Associate Professor

Department of Electronics and Computer Technics

Oleksandr Kobyakov, Sumy State University Rymskoho-Korsakova str., 2, Sumy, Ukraine, 40007

PhD, Associate Professor

Department of Electronics and Computer Technics

Sandis Spolitis, Riga Technical University Azenes str., 12, Riga, Latvia, LV-1048

PhD, Professor

Institute of Telecommunications

Communication Technologies Research Center

Vjaceslavs Bobrovs, Riga Technical University Azenes str., 12, Riga, Latvia, LV-1048

PhD, Professor

Institute of Telecommunications

References

  1. Lin, S., Costello, D. J. (1983). Error control coding: fundamentals and applications. Prentice-Hall, 603.
  2. Morelos-Zaragoza, R. H. (2006). The art of error correcting coding. John Wiley & Sons, Inc., 278. doi: https://doi.org/10.1002/0470035706
  3. MacWilliams, F., Sloane, N. (Eds.) (1977). The theory of Error-Correcting Codes. North Holland, 762. doi: https://doi.org/10.1016/s0924-6509(08)x7030-8
  4. Tomlinson, M., Tjhai, C. J., Ambroze, M. A., Ahmed, M., Jibril, M. (2017). Error-Correction Coding and Decoding. Springer. doi: https://doi.org/10.1007/978-3-319-51103-0
  5. Arikan, E. (2009). Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels. IEEE Transactions on Information Theory, 55 (7), 3051–3073. doi: https://doi.org/10.1109/tit.2009.2021379
  6. Schlegel, C. B., Perez, L. C. (Eds.) (2015). Trellis and Turbo Coding: Iterative and Graph-Based Error Control Coding. John Wiley & Sons, Inc, 528. doi: https://doi.org/10.1002/9781119106319
  7. Borysenko, A. A., Horiachev, O. Y., Matsenko, S. M., Kobiakov, O. M. (2018). Noise-immune codes based on permutations. 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). doi: https://doi.org/10.1109/dessert.2018.8409204
  8. Faure, E. V. (2017). Factorial coding with error correction. Radio Electronics, Computer Science, Control, 3, 130–138. doi: https://doi.org/10.15588/1607-3274-2017-3-15
  9. Borysenko, O., Kalashnikov, V., Kalashnykova, N. (2016). Description and applications of binomial numeral systems. Computer Science and Cyber Security, 2 (2), 13–21.
  10. Grinenko, V. V. (2004). Otsenka pomehoustoychivosti binomial'nyh modifitsirovannyh kodov. Visnyk Sumskoho derzhavnoho universytetu. Seriya: Tekhnichni nauky, 12 (71), 64–69.
  11. Borysenko, O., Matsenko, S., Spolitis, S., Bobrovs, V. (2020). Development of the Fibonacci-Octal Error Detection Code for Telecommunication Systems. 2020 24th International Conference Electronics. doi: https://doi.org/10.1109/ieeeconf49502.2020.9141620
  12. Zeger, K., Vardy, A., Agrell, E. (2000). Upper bounds for constant-weight codes. IEEE Transactions on Information Theory, 46 (7), 2373–2395. doi: https://doi.org/10.1109/18.887851
  13. Wang, X.-M., Yang, Y.-X. (1994). On the undetected error probability of nonlinear binary constant weight codes. IEEE Transactions on Communications, 42 (7), 2390–2394. doi: https://doi.org/10.1109/26.297847
  14. Hoggatt, V. (1969). Fibonacci and Lucas Numbers. MA: Houghton Mifflin, 92.
  15. Vajda, S. (1989). Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. Chichester: Ellis Horwood Ltd, 189.
  16. Vorobyov, N. (1966). The Fibonacci Numbers. DC Heath, 47.
  17. Stakhov, A. (2016). Fibonacci p-codes and Codes of the “Golden” p-proportions: New Informational and Arithmetical Foundations of Computer Science and Digital Metrology for Mission-Critical Applications. British Journal of Mathematics & Computer Science, 17 (1), 1–49. doi: https://doi.org/10.9734/bjmcs/2016/25969
  18. Avila, B. T., Campello de Souza, R. M. (2017). Meta-Fibonacci Codes: Efficient Universal Coding of Natural Numbers. IEEE Transactions on Information Theory, 63 (4), 2357–2375. doi: https://doi.org/10.1109/tit.2017.2663433
  19. Borysenko, O., Kulyk, I., Matsenko, S., Berezhna, O., Matsenko, A. (2016). Optimal synthesis of digital counters in the Fibonacci codes with the minimal form of representation. Eastern-European Journal of Enterprise Technologies, 4 (4 (82)), 4–10. doi: https://doi.org/10.15587/1729-4061.2016.75596
  20. Matsenko, S., Borysenko, O., Spolitis, S., Bobrovs, V. (2019). Noise Immunity of the Fibonacci Counter with the Fractal Decoder Device for Telecommunication Systems. Latvian Journal of Physics and Technical Sciences, 56 (5), 12–21. doi: https://doi.org/10.2478/lpts-2019-0027
  21. Borisenko, A. A., Onanchenko, E. L. (1994). Otsenka pomehoustoychivosti nerazdelimyh kodov. Visnyk Sumskoho universytetu, 2, 64–68.
  22. Hamming, R. W. (1950). Error Detecting and Error Correcting Codes. Bell System Technical Journal, 29 (2), 147–160. doi: https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
  23. Gorbunov, E. (1956). Sravnenie nekotoryh pomehoustoychivyh kodov. Telekommunikatsii, 12, 42–47.
  24. Gordeev, N. (1957). O vybore dliny koda dlya simpleksnogo kanala peredachi dannyh. Teoreticheskiy uchebnik uchrezhdeniy svyazi, 72, 19–25.

Downloads

Published

2020-12-31

How to Cite

Borysenko, O., Matsenko, S., Novhorodtsev, A., Kobyakov, O., Spolitis, S., & Bobrovs, V. (2020). Estimating the indivisible error detecting сodes based on an average probability method. Eastern-European Journal of Enterprise Technologies, 6(9 (108), 25–33. https://doi.org/10.15587/1729-4061.2020.218076

Issue

Section

Information and controlling system