Formation of spherulites and pentagonal quasicrystals in metals being electrodeposited
DOI:
https://doi.org/10.15587/1729-4061.2014.21860Keywords:
Spherulite, Pentagonal Quasicrystal, Liquid State, Electrodeposited Metal, Undercooling, Superfast SolidificationAbstract
The aim of the work was experimental verification of validity of the phenomenon of phase formation through a stage of liquid state in metals being electrodeposited. The idea of the work was based on the known fact, that at minor undercooling of melt solidification of metal usually occurs in dendritic form, and at significant undercooling of melt dendritic form transfers to spherulite one. At that spherulites, as a rule, are being formed on the interface between metal and a melting-pot. Besides, superfast solidification of greatly undercooled melt causes formation of quasicrystals with pentagonal symmetry. Therefore, if metals being electrodeposited really pass through a stage of undercooled liquid state and rapidly solidify at the deposition temperature, than spherulite forms of crystallization and pentagonal quasicrystals should be detected in their layers adjacent to the cathode. As the result of experimental investigations accomplished by the method of scanning electron microscopy formation of spherulites and pentagonal quasicrystals in the adjacent to the cathode layers of metals (copper, lead and cobalt) being electrodeposited was discovered. It is shown, that presence of spherulites and pentagonal quasicrystals in electrodeposited metals is the result of superfast solidification of undercooled liquid metallic phase being formed during electrochemical deposition of metals. Formation of spherulites and pentagonal quasicrystals in the adjacent to the cathode layers of metals being electrodeposited proves the validity of the phenomenon of phase formation through a stage of liquid state in metals being electrodeposited.
References
- Гирин, О. Б. Изменение дифракции рентгеновских лучей, рассеянных металлами в процессе их электролитического осаждения [Текст] / О. Б. Гирин, Г. М. Воробьев // Журнал физической химии. – 1988. – Т. 62, № 5. – С. 1347–1349.
- Girin, O. B. Substructure Formation and Texture in Electrodeposits [Text] / O. B. Girin // Journal of Electronic Materials. – 1995. – Vol. 24, № 8. – P. 947-953.
- Girin, O. B. Phenomenon of Precipitation of Metal Being Electrodeposited, Occurring via Formation of an Undercooled Liquid Metal Phase and its Subsequent Solidification. Part 1. Experimental Detection and Theoretical Grounding [Text] / O. B. Girin // Materials Development and Processing. – Weinheim : WILEY-VCH, 2000. – V. 8. – P. 183-188.
- Girin, O. B. Phenomenon of Precipitation of Metal Being Electrodeposited, Occurring via Formation of an Undercooled Liquid Metal Phase and its Subsequent Solidification. Part 2. Experimental Verification [Text] / O. B. Girin // Materials Development and Processing. – Weinheim : WILEY-VCH, 2000. – V. 8. – P. 189-194.
- Girin, O. B. Phenomenon of Structure Formation of Metals being Electrodeposited via a Super-Cooled Metal Liquid, and its Use for the Development of Advanced Technologies of Depositing New Types of Protective Composite Coats on Canned Food Steel Sheet [Text] / O. B. Girin // Proc. of the 5th Int. Sci. Forum AFES. – Paris: Int. Acad. of Engn, 2004. – P. 142–147.
- Girin, O. B. Phase Transformations in the Metallic Materials being Electrodeposited and Their Application for the Development of Advanced Technologies for Anticorrosive Protection of Canned-Food Steel Sheet [Text] / O. B. Girin // Materials Science Forum. – 2007. – V. 561-565. – P. 2369-2372.
- Girin, O. B. Phase and Structure Formation of Metallic Materials Electrodeposited via a Liquid State Stage: New Experimental Proof [Text] / O. B. Girin // Defect and Diffusion Forum. – 2010. – V. 303-304. – P. 99-105.
- Girin, O. B. Phase Formation through a Stage of Liquid State in Metallic Materials being Electrodeposited: Recent Experimental Proofs [Text] / O. B. Girin // International Journal of Material Science. – 2012. – Vol. 2. – №4. – P. 108-118.
- Мирошниченко, И. С. Закалка из жидкого состояния [Текст] : монография / И. С. Мирошниченко. – М. : Металлургия, 1982. – 168 с.
- Glezer, A. M. Melt-Quenched Nanocrystals [Text] / A. M. Glezer, I. E. Permyakova. – Boca Raton : CRC Press, 2013. – 369 p.
- Powel, G. L. F. The Undercooling of Copper and Copper-Oxygen Alloys [Text] / G. L. F. Powel, L. M. Hogan // Transactions of the Metallurgical Society of AIME. – 1968. – Vol. 242. – № 10. – P. 2133-2138.
- Caesar, C. Undercooling and Crystal Growth Velocity During Rapid Solidification [Text] / C. Caesar // Advanced Engineering Materials. – 1999. – V. 1. – № 1. – P. 75-79.
- Есин, В. О. Сферолитные формы кристаллизации в металлах [Текст] / В. О. Есин, В. А. Сазонова, И. А. Заблоцкая // Известия АН СССР. Металлы. – 1989. – № 2. – С. 73-77.
- Granasy, L. Growth and Form of Spherulites [Text] / L. Granasy, T. Pusztai, G. Tegze, J. A. Warren, J. F. Douglas // Physical Review E. – 2005. – Vol. 72. – № 1. – 011605.
- Andreassen, J.-P. Investigations of Spherulitic Growth in Industrial Crystallization [Text] / J.-P. Andreassen, E. M. Flaten, R. Beck, A. E. Lewis // Chemical Engineering Research and Design. – 2010. – Vol. 88. – P. 1163-1168.
- Shechtman, D. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry [Text] / D. Shechtman, I. Blech, D. Gratias, J. W. Cahn // Physical Review Letters. – 1984. – Vol. 53. – № 20. – P. 1951-1954.
- Tsai, A. P. Icosahedral Clusters, Icosaheral Order and Stability of Quasicrystals – a View of Metallurgy [Text] / A. P. Tsai // Science and Technology of Advanced Materials. – 2008. – Vol. 9. – P. 1-20.
- Vekilov, Yu. Kh. Quasicrystals [Text] / Yu. Kh. Vekilov, M. A. Chernikov // Physics-Uspekhi. – 2010. – Vol. 53. – № 6. – P. 537-560.
- Мамонтов, Е. А. Формирование сферолитов при электрокристаллизации меди на индифферентных подложках [Текст] / Е. А. Мамонтов, Л. А. Курбатова, А. П. Воленко // Электрохимия. – 1983. – Т. 19. – № 11. – С. 1546-1549.
- Мамонтов, Е. А. Сферолиты как форма роста электролитических осадков [Текст] / Е. А. Мамонтов, Л. А. Курбатова, А. П. Воленко // Электрохимия. – 1985. – Т. 21. – № 9. – С. 1211-1214.
- Мамонтов, Е. А. Образование пентагональных кристаллов в электролитических осадках меди и дисклинации [Текст] / Е. А. Мамонтов, Л. А. Курбатова // Электрохимия. – 1992. – Т. 28. – № 5. – С. 746-753.
- Викарчук, А. А. Классификация структур, формирующихся при электрокристаллизации металлов с гранецентрированной кубической решеткой [Текст] / А. А. Викарчук // Электрохимия. – 1992. – Т. 28. – № 7. – С. 974-982.
- Vikarchuk, A. A. Pentagonal Copper Crystals: Various Growth Shapes and Specific Features of their Internal Structure [Text] / A. A. Vikarchuk, A. P. Volenko // Physics of the Solid State. – 2005. – Vol. 47. – № 2. – P. 352-356.
- Мамонтов, Е. А. О возможностях дисклинационного анализа структуры электроосажденных металлов [Текст] / Е. А. Мамонтов // Электрохимия. – 1994. – Т. 30. – № 2. – С. 170-173.
- Викарчук, А. А. Модель начального этапа электрокристаллизации меди на индифферентных подложках [Текст] / А. А. Викарчук, А. П. Воленко, В. И. Скиданенко // Известия РАН. Серия физическая. – 2004. – Т. 68, №10. – С. 1384-1390.
- Vikarchuk, A. A. Specific Features of Mass and Heat Transfer in Microparticles and Nanoparticles Formed upon Electrocrystallization of Copper [Text] / A. A. Vikarchuk, I. S. Yasnikov // Physics of the Solid State. – 2006. – Vol. 48. – № 3. – P. 577-580.
- Vikarchuk, A. A. Phase Transitions in Small Particles Formed at the Initial Stages of Electrocrystallization of Metals [Text] / A. A. Vikarchuk, I. S. Yasnikov // Physics of the Solid State. – 2007. – Vol. 49. – № 1. – P. 1-5.
- Vikarchuk, A. A. Temperature Evolution for Small Particles Formed During Electrocrystallization [Text] / A. A. Vikarchuk, Yu. D. Gamburg, I. S. Yasnikov // Russian Journal of Electrochemistry. – 2008. – Vol. 44. – № 7. – P. 857-860.
- Vikarchuk, A. A. Initial Stage in Three-Dimensional Nucleation of Pentagonal Crystals [Text] / A. A. Vikarchuk, A. P. Volenko, Yu. D. Gamburg, V. I. Skidanenko // Russian Journal of Electrochemistry. – 2005. – Vol. 41. – № 9. – P. 996-1000.
- Girin, O. B., Vorob’ev, G. M. (1988). Change of Diffraction of X-Rays Dissipated by Metals During their Electrolytic Deposition. Zhurnal Fizicheskoi Khimii, 62 (5), 1347–1349.
- Girin, O. B. (1995). Substructure Formation and Texture in Electrodeposits. Journal of Electronic Materials, 24 (8), 947-953.
- Girin, O. B. (2000). Phenomenon of Precipitation of Metal Being Electrodeposited, Occurring via Formation of an Undercooled Liquid Metal Phase and its Subsequent Solidification. Part 1. Experimental Detection and Theoretical Grounding. Materials Development and Processing. Weinheim, Germany : WILEY-VCH, 8, 183-188.
- Girin, O. B. (2000). Phenomenon of Precipitation of Metal Being Electrodeposited, Occurring via Formation of an Undercooled Liquid Metal Phase and its Subsequent Solidification. Part 2. Experimental Verification. Materials Development and Processing. Weinheim, Germany : WILEY-VCH, 8, 189-194.
- Girin, O. B. (2004). Phenomenon of Structure Formation of Metals being Electrodeposited via a Super-Cooled Metal Liquid, and its Use for the Development of Advanced Technologies of Depositing New Types of Protective Composite Coats on Canned Food Steel Sheet. Proc. of the 5th Int. Sci. Forum AFES. Paris, France: Int. Acad. of Engn, 142–147.
- Girin, O. B. (2007). Phase Transformations in the Metallic Materials being Electrodeposited and Their Application for the Development of Advanced Technologies for Anticorrosive Protection of Canned-Food Steel Sheet. Materials Science Forum, 561-565, 2369-2372.
- Girin, O. B. (2010). Phase and Structure Formation of Metallic Materials Electrodeposited via a Liquid State Stage: New Experimental Proof. Defect and Diffusion Forum, 303-304, 99-105.
- Girin, O. B. (2012). Phase Formation through a Stage of Liquid State in Metallic Materials being Electrodeposited: Recent Experimental Proofs. International Journal of Material Science, 2 (4), 108-118.
- Miroshnichenko, I. S. (1982). Quenching from Liquid State. Moscow, USSR: Metallurgy, 168.
- Glezer, A. M., Permyakova, I. E. (2013). Melt-Quenched Nanocrystals. Boca Raton, USA: CRC Press, 369.
- Powel, G. L. F., Hogan, L. M. (1968). The Undercooling of Copper and Copper-Oxygen Alloys. Transactions of the Metallurgical Society of AIME, 242 (10), 2133-2138.
- Caesar, C. (1999). Undercooling and Crystal Growth Velocity During Rapid Solidification. Advanced Engineering Materials, 1 (1), 75-79.
- Yesin, V. O., Sazonova, V. A., Zablotskaia, I. A. (1989). Spherulite Form of Crystallization in Metals. Izvestiia Akademii nauk SSSR. Metally, 2, 73-77.
- Granasy, L., Pusztai, T., Tegze, G., Warren, J. A., Douglas, J. F. (2005). Growth and Form of Spherulites. Physical Review E, 72 (1), 011605.
- Andreassen, J.-P., Flaten, E. M., Beck, R., Lewis, A. E. (2010). Investigations of Spherulitic Growth in Industrial Crystallization. Chemical Engineering Research and Design, 88, 1163-1168.
- Shechtman, D., Blech, I., Gratias, D., Cahn, J. W. (1984). Metallic Phase with Long-Range Orientational Order and No Translational Symmetry. Physical Review Letters, 53 (20), 1951-1954.
- Tsai, A. P. (2008). Icosahedral Clusters, Icosaheral Order and Stability of Quasicrystals – a View of Metallurgy. Science and Technology of Advanced Materials, 9, 1-20.
- Vekilov, Yu. Kh., Chernikov, M. A. (2010). Quasicrystals. Physics-Uspekhi, 53 (6), 537-560.
- Mamontov, Ye. A., Kurbatova, L. A., Volenko, A. P. (1983). Formation of Spherulites During Electrocrystallization of Copper on Indifferent Substrates. Electrokhimiia, 19 (11), 1546-1549.
- Mamontov, Ye. A., Kurbatova, L. A., Volenko, A. P. (1985). Spherulites as Form of Growth of Electrolytic Deposits. Electrokhimiia, 21 (9), 1211-1214.
- Mamontov, Ye. A., Kurbatova, L. A. (1992). Formation of Pentagonal Crystals in Electrolytic Deposits of Copper and Disclinations. Electrokhimiia, 28 (5), 746-753.
- Vikarchuk, A. A. (1992). Classification of Structures being Formed During Electrocrystallization of Metals with Face-Centered Cubic Lattice. Electrokhimiia, 28 (7), 974-982.
- Vikarchuk, A. A., Volenko, A. P. (2005). Pentagonal Copper Crystals: Various Growth Shapes and Specific Features of their Internal Structure. Physics of the Solid State, 47 (2), 352-356.
- Mamontov, Ye. A. (1994). About the Possibilities of Disclination Analysis of Structure of Electrodeposited Metals. Electrokhimiia, 30 (2), 170-173.
- Vikarchuk, A. A., Volenko, A. P., Skidanenko, V. I. (2004). Model of the Initial Stage of Electrocrystallization of Copper on Indifferent Substrates. Izvestiia Rossiiskoi Akademii nauk. Seriia fizicheskaia, 68 (10), 1384-1390.
- Vikarchuk, A. A., Yasnikov, I. S. (2006). Specific Features of Mass and Heat Transfer in Microparticles and Nanoparticles Formed upon Electrocrystallization of Copper. Physics of the Solid State, 48 (3), 577-580.
- Vikarchuk, A. A., Yasnikov, I. S. (2007). Phase Transitions in Small Particles Formed at the Initial Stages of Electrocrystallization of Metals. Physics of the Solid State, 49 (1), 1-5.
- Vikarchuk, A. A., Gamburg, Yu. D., Yasnikov, I. S. (2008). Temperature Evolution for Small Particles Formed During Electrocrystallization. Russian Journal of Electrochemistry, 44 (7), 857-860.
- Vikarchuk, A. A., Volenko, A. P., Gamburg, Yu. D., Skidanenko, V. I. (2005). Initial Stage in Three-Dimensional Nucleation of Pentagonal Crystals. Russian Journal of Electrochemistry, 41 (9), 996-1000.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Олег Борисович Гирин, Владимир Иванович Овчаренко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.