Carbon monoxide control system in industrial premises

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.22008

Keywords:

carbon monoxide, concentration sensor, twoway circuit, adaptive tuning, modeling, monitoring

Abstract

Carbon monoxide concentration control system in boiler, gas-generating, blast-furnace, open-hearth and foundry shops, based on the infrared spectrometry method is developed. The design of the optical carbon monoxide sensor, which is characterized by compactness, high sensitivity and selectivity, long service life and reasonable cost is proposed. According to the two-way circuit, the system structure, which provides the error of determining the CO concentration not less than 0.0168 % in the range from 0 to 5 % is developed.

The conducted studies of the developed system control device errors have allowed to optimize the sensor control modes and improve the accuracy of determining the carbon monoxide concentration.

Sensor tuning device in the form of an adaptive measuring system, based on the model of the adaptive correction of the characteristics of the Lyapunov transducers is proposed. The studies of the designed device have shown that the peak error value of the adaptive tuning depends on the voltage value at the sensor gate. Thus, transient is completed in the time from 0.8 s to 2.9 s, and the values of the adjustable coefficient allow to select the optimum values of the transient duration and the amplitude deviation error, maximum by the module. Also, the adaptive tuning model does not contain unwanted oscillations. The advantages of the developed system also include the ability to retune the sensor for monitoring the content of other impurities, contained in the air, such as CO2, NO, NO2, NH3, H2O2, C2H4, CH2O, CH4, CH3OH and other. The developed system can be used for carbon monoxide content control in industrial premises, air monitoring in settlements and upgrading modern medical spirographic equipment

Author Biographies

Андрей Сергеевич Сечин, Zaporizhzhya State Engineering Academy Lenina 226, Zaporizhzhya, 69006

Department of Physical and Biomedical Electronics

Евгений Яковлевич Швец, Zaporizhzhya State Engineering Academy Lenina 226, Zaporizhzhya, 69006

Professor

Department of Physical and Biomedical Electronics

Егор Николаевич Киселев, Zaporizhzhya State Engineering Academy Lenina 226, Zaporizhzhya, 69006

Docent

Department of Physical and Biomedical Electronics

References

  1. Повітря атмосферне. Визначення оксиду вуглецю. Метод інфрачервоного розсіювання. ДСТУ ISO 4224:2008. – [Чинний від 2011-01-01] – К.: Держспоживстандарт України, 2011. – 14 с.
  2. Державні санітарні правила охорони атмосферного повітря населених місць (від забруднення хімічними і біологічними речовинами). ДСП-201-97. – К.: Держспоживстандарт України, 1997. – 57с.
  3. Атмосфера. Норми і методи вимірювання вмісту оксиду вуглецю та вуглеводнів у відпрацьованих газах автомобілів з двигунами, що працюють на бензині або газовому паливі. ДСТУ 4277:2004. – [Чинний від 2004-01-31] – К.: Держспоживстандарт України, 2004. – 8 с.
  4. Шулагин, Ю. А. Лазерный анализ эндогенного СО в выдыхаемом воздухе [Текст] / Ю. А. Шулагин, Е. В. Степанов, А. Г. Чучалин и др. // Труды Института Общей Физики им. А. М. Прохорова. – М.: Наука, 2005. - Т. 61. – 2005. – С. 135–189.
  5. Dai, C. - L. Cobalt Oxide Nanosheet and CNT Micro Carbon Monoxide Sensor Integrated with Readout Circuit on Chip [Тext] / C. - L. Dai, Y. - C. Chen, C. -C. Wu, C. - F. Kuo // Sensors, - 2010. – С. 1753–1764.
  6. Liu, X. A Survey on Gas Sensing Technology [Текст] / X. Liu, S. Cheng, H. Liu // Sensors. – 2012. – Р. 9635-9665.
  7. MICROceL CF-Carbon Monoxide. Product Data Sheet, Available at: www.citytech.com/PDF-Datasheets/microcelcf.pdf (accessed
  8. 02.2014).
  9. NE4-CO Electrochemical Carbon Monoxide Gas Sensor, Available at: www.nemoto.eu/ne4-co.html (accessed 26.02.2014).
  10. Газоанализаторы портативные (анализаторы газов), датчики и газоаналитические системы, [Электронный ресурс]. Режим доступа: www.mst-it.com/rus/content/catalogue/misc (accessed 26.02.2014).
  11. Figaro Product information. TGS 5042 – for the detection of Carbon Monoxide, [Electronic resource] / Available at: www.figarosensor.com/products/5042pdf.pdf (accessed 26.02.2014).
  12. Durrani, S. M. A. Investigation of the Carbon Monoxide Gas Sensing Characteristics of Tin Oxide Mixed Cerium Oxide Thin Films [Тext] / S. M. A. Durrani, M. F. Al-Kuhaili, I. A. Bakhtiari // Sensors. – 2012. – C. 2598-2609.
  13. O’Toole, M. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices [Тext] / M. O’Toole, D. Diamond // Sensors. –
  14. – C. 2453-2479.
  15. Po-Chien, C. Enhancement of Optical Adaptive Sensing by Using a Dual-Stage Seesaw-Swivel Actuator with a Tunable Vibration Absorber [Тext] / C. Po-Chien, L. Yu-Cheng, C. Stone // Sensors. – 2011. – C. 4808-4829.
  16. Hung-Yi, C. Model-Free Adaptive Sensing and Control for a Piezoelectrically Actuated System [Текст] / C. Hung-Yi , L. Jin-Wei // Sensors. – 2010. – C. 10545-10559.
  17. Jinsoo, J. An Innovations-Based Noise Cancelling Technique on Inverse Kepstrum Whitening Filter and Adaptive FIR Filter in Beamforming Structure [Тext] / J. Jinsoo // Sensors. – 2011. – C. 6816-6841.
  18. Костенко, В. Л. Измерительные преобразователи на основе комбинированных твердотельных структур: научное издание [Текст] / В. Л. Костенко, Е. Я. Швец, Е. Н. Киселев, Н. А. Омельчук. – Запорожье: ЗГИА, 2001.- 101 с.
  19. Fine, G. F. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring [Тext] / G. F. Fine, L. M. Cavanagh, A. Afonja // Sensors. – 2010. – С. 5469-5502.
  20. Микропроцессоры. Средства сопряжения. Контролирующие и информационно-управляющие системы [Текст]: учеб. для техн. вузов / В. Д. Вернер, Н. В. Воробьев, А. В. Горячев [и др.]; под общ. ред. Л. Н. Преснухина. – Минск : Вышэйшая школа, 1987. – 303 с.
  21. Паталаха, А. С. Розробка моделі адаптивної корекції системи визначення концентрації моноксиду вуглецю [Текст] / А. С. Паталаха, Є. М. Кісельов // Матеріали XVIII науково – технічної конференції студентів, магістрантів, аспірантів і викладачів ЗДІА. Електроніка, автоматизовані системи та сучасні інформаційні технології. Том ІІІ, 15-19 квітня 2013 р. – Запоріжжя: ЗДІА, – 2013. – С. 22.
  22. Povitria atmosferne. Vyznachennia oksydu vuhletsiu. Metod infrachervonoho rozsiiuvannia. DSTU ISO 4224:2008. Kyiv, Ukraine: Derzhspozhyvstandart Ukrainy, 14.
  23. Derzhavni sanitarni pravyla okhorony atmosfernoho povitria naselenykh mists (vid zabrudnennia khimichnymy I biolohichnymy rechovynamy). DSP-201-97. Kyiv, Ukraine: Derzhspozhyvstandart Ukrainy, 57.
  24. Atmosfera. Normy i metody vymiriuvannia vmistu oksydu vuhletsiu ta vuhlevodniv u vidpratsovanykh hazakh avtomobiliv z dvyhunamy, shcho pratsiuiut na benzyni abo hazovomu palyvi. DSTU 4277:2004. Kyiv, Ukraine: Derzhspozhyvstandart Ukrainy, 8.
  25. Shulagin, Yu. A., Stepanov, E. V., Chuchalin, A. G. (2005). Lazernyiy analiz endogennogo SO v vyidyihaemom vozduhe: Trudyi Instituta Obschey Fiziki im. A. M. Prohorova. Moscow, : Nauka, 135-189.
  26. Dai, C. - L., Chen, Y. - C., Wu, C. - C., Kuo, C. - F. (2010). Cobalt Oxide Nanosheet and CNT Micro Carbon Monoxide Sensor Integrated with Readout Circuit on Chip. Sensors, 1753–1764.
  27. Liu, X., Cheng, S., Liu, H. (2012). A Survey on Gas Sensing Technology. Sensors, 9635-9665.
  28. MICROceL CF-Carbon Monoxide. Product Data Sheet, Available at: www.citytech.com/PDF-Datasheets/microcelcf.pdf (accessed 26.02.2014).
  29. NE4-CO Electrochemical Carbon Monoxide Gas Sensor. Available at: www.nemoto.eu/ne4-co.html (accessed 26.02.2014).
  30. Gazoanalizatoryi portativnyie (analizatoryi gazov), datchiki i gazoana-liticheskie sistemyi. Available at: www.mst-it.com/rus/content/catalogue/misc (accessed 26.02.2014).
  31. Figaro Product information. TGS 5042 – for the detection of Carbon Monoxide. Available at: www.figarosensor.com/products/5042pdf.pdf (accessed 26.02.2014).
  32. Durrani, S. M. A., Al-Kuhaili, M. F., Bakhtiari, I. A. (2012). Investigation of the Carbon Monoxide Gas Sensing Characteristics of Tin Oxide Mixed Cerium Oxide Thin Films. Sensors, 2598-2609.
  33. O’Toole, M., Diamond, D. (2008). Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices. Sensors, 2453-2479.
  34. Po-Chien, C., Yu-Cheng, L., Stone, C. (2011). Enhancement of Optical Adaptive Sensing by Using a Dual-Stage Seesaw-Swivel Actuator with a Tunable Vibration Absorber. Sensors, 4808-4829.
  35. Hung-Yi, C., Jin-Wei, L. (2010). Model-Free Adaptive Sensing and Control for a Piezoelectrically Actuated System. Sensors, 10545-10559.
  36. Jinsoo, J. (2011). An Innovations-Based Noise Cancelling Technique on Inverse Kepstrum Whitening Filter and Adaptive FIR Filter in Beamforming Structure. Sensors, 6816-6841.
  37. Kostenko, V. L., Shvets, E. Ya., Kiselev, E. N., Omelchuk, N. A. (2001). Izmeritelnyie preobrazovateli na osnove kombinirovannyih tverdotelnyih struktur: nauchnoe izdanie. Zaporozhe, Ukraine: ZGIA, 101.
  38. Fine, G. F., Cavanagh, L. M., Afonja, A. (2010). Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors, 5469-5502.
  39. Verner, V. D., Vorobev, N. V., Goryachev, A. V. (1987). Mikroprotsessoryi. Sredstva sopryazheniya. Kontroliruyuschie I informatsionno-upravlyayuschie sistemyi: ucheb. dlya tehn. vuzov. Minsk, USSR: Vyisheyshaya shkola, 303.
  40. Patalaha, A. S., Kiselev, E. N. (2013). Rozrobka modeli adaptyvnoyi korektcii kontcentratcii monoksydu vugletcyu. Proc. of XVIII Conf. for students, masters, aspirants and instructors ZSEA. Electronics, automotive systems and novel information technologies, ІІІ, 15-19, 22.

Published

2014-04-18

How to Cite

Сечин, А. С., Швец, Е. Я., & Киселев, Е. Н. (2014). Carbon monoxide control system in industrial premises. Eastern-European Journal of Enterprise Technologies, 2(9(68), 33–38. https://doi.org/10.15587/1729-4061.2014.22008

Issue

Section

Information and controlling system