Influence of extraction chambers backfilling on microclimat of deep mines

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.22151

Keywords:

microclimate, normalization, airing, backfilling, hydration, thermophysical parameters, temperature, humidity

Abstract

To enhance the safety of underground works and save the earth surface from caving, mining enterprises perform underground ore extraction using backfilling. Together with a positive solution to the problem of mining safety and environmental improvement when using the backfilling system, there is a problem of heat emission during backfilling material hydration. To solve this problem, the studies of thermophysical properties of rocks of Kryvbas and Zaporozhye iron-ore plant, as well as backfilling materials, used to fill the worked-out space, are conducted.

As a result of laboratory studies, the values of heat conductivity λ, W/m·K, heat capacity C, kJ/kgK and thermal diffusivity α, m2/s of rocks and backfilling materials are determined. Determining thermophysical properties of rocks and backfilling materials has allowed to define the boundaries of influence of backfill hydration heat in chambers on the surrounding rock mass.

The way to reduce the temperature in exhaust chambers during hydration of solid backfill by adding crushed rocks from the developed deposit in the backfilling mixture is considered. Thus, by calculations and observations, it is found that using crushed rocks as the backfilling mixture component allows to reduce the zone of influence of backfill hydration on the temperature mode of adjacent mine workings up to 10 m.

Author Biography

Александр Александрович Лапшин, Kryvyi Rih National University 37 Pushkina str., Kryvyi Rih, Ukraine, 50002

Candidate of technical sciences, docent

Mine Aerology and Labor Safety Department

References

  1. Ступнік, М. І. Комбіновані способи подальшої розробки залізорудних родовищ Криворізького басейну [Текст] / М. І. Ступнік, С. В. Письменний // Вісник Криворізького національного університету. – 2012. – Вип. 95 (1) – С. 3–7.
  2. Сморчков, Ю. П. Обеспечение комфортных условий труда в тупиковых выработках при буровзрывном способе проходки. [Текст] / Ю. П. Сморчков, Г. О. Петрунин // Безопасность труда в промышленности. – 2008. – № 7. – С. 31–34.
  3. Алексеенко, С. А. Альтернативный энергосберегающий способ и подземная система кондиционирования рудничного воздуха для глубоких угольных шахт [Текст] / С. А. Алексеенко, И. А. Шайхлисламова // Холодильная техника и технология. – 2005. – Вып. 5. – С. 15 – 19.
  4. Казаков, Б. П. Влияние закладочных работ на формирование теплового режима в горных выработках в условиях рудников ОАО «Норильский никель» [Текст] / Б. П. Казаков, А. В. Шалимов, А. В. Зайцев // Вестник Пермского национального исследовательского политехнического университета. – 2012. – № 2. – С. 110–114.
  5. Лапшин, А. А. Проблема теплового режима глубоких железорудных шахт и создание эффективных способов его нормализации [Текст] / А. А. Лапшин, А. Е. Лапшин, И. Б. Ошмянский // Форум горняков – Днепропетровск : НГУ, 2008. – С. 98 –105.
  6. Кузин, В. А. Руководство по выбору горнотехнических способов нормализации климатических условий на выемочных участках глубоких шахт [Текст] / В. А. Кузин, В. Р. Алабьев, С. А. Песок, А. С. Розенберг. – Донецк: Макеевка-Донбасс, 1995. – 44 с.
  7. Лапшин, А. А. Настанова з проектування вентиляції рудних шахт [Текст] / А. А. Лапшин, І. Б. Ошмянський, О. Є. Лапшин та ін. – Кривий Ріг: КНУ, 2011. – 111 с.
  8. Kortnik, J. Backfilling waste material composites environmental impact assessment [Теxt] / J. Kortnik // South African Institute of Mining and Metallurgy. – 2003. – Р. 519–524.
  9. Krupnik, L. A. Backfilling technology in Kazakhstan mines [Теxt] / L. A. Krupnik, Y. N. Shaposhnik, S. N. Shaposhnik, A. K. Tursunbaeva // Journal of Mining Science. – 2013. – Р. 82–89.
  10. Ward, C. R. The use of coal combustion products in mine backfill applications [Теxt] / C. R. Ward, D. French, J. Jankowski // Co-operative Research Centre for Coal in Sustainable Development. – 2007. – Р. 341–371.
  11. Ляшенко, В. И. Совершенствование технологии закладочных работ при подземной разработке урановых месторождений. [Текст] / В. И. Ляшенко, Н. И. Дядечкин // Известия вузов. Горный журнал. – 2011. – № 2. – С. 9–17.
  12. Ghoreishi-Madiseh, S. A. Numerical modeling of thawing in frozen rocks of underground mines caused by backfilling [Теxt] / S. A. Ghoreishi-Madiseh, F. Hassani, F. Abbasy, A. Mohammadian // International journal of rock mechanics and mining sciences. – 2011. – Р. 1068–1076.
  13. Галкин, А. Ф. Регулирование теплового режима при проходке выработок в мерзлых породах [Текст] / А. Ф. Галкин // Безопасность труда в промышленности. – 2008. – № 7. – С. 17–21.
  14. Андреев, М. Н. Разработка состава закладочного материала и испытания его прочностных свойств. [Текст] / М. Н. Андреев, Э. И. Богуславский // Записки горного института. – 2011. – Т. 189. – С. 130–133.
  15. Zhang, H. B. Study of the mechanism of backfill and surrounding rock of open stope during subsequent backfill mining [Теxt] / H. B. Zhang, Y. J. Chen // Advanced material research. – 2013. – P. 452–456.
  16. Stupnik, M. I., Pysmennyi, S. V. (2012). Combined methods of further development of Krivbass iron ore deposits. Journal of Krivoy Rog National University, 3–7.
  17. Smorchkov, Y. P., Petrunin, G. O. (2008). Assuring of comfortable working conditions in irredundant mine workings at drilling and blasting method excavation. Labour Safety in Industry, 17–21.
  18. Alekseenko, S. A., Sheihlislamova, I. A. (2005). Alternative energy-saving method and underground condition system of mine air conditioning for deep coal mines. Refrigerating engineering and technology, 15–17.
  19. Kazakov, B. P., Shalimov, A. V., Zaycev, A. V. (2012). Influence of backfilling works on the formation of thermal regime in mine workings of ore mines. Bulletin of Perm National Research Polytechnic University, 110–114.
  20. Lapshin, A. A., Lapshin, A. E., Oshmyanskyi, I. B. (2008). The problem of the thermal regime of the deep iron ore mines and the establishment of effective ways of its normalizing. Dnepropetrovsk: National Mining University, 98–105.
  21. Kuzin, V. A., Alabiev, V. R., Pesok, S. А., Rosenberg, A. S. (1995). Selection Guide of mining methods for normalization of climaticconditions on working areas of deep mines. Donetsk, 44.
  22. Lapshin, A. A., Lapshin, A. E., Oshmyanskyi, I. B. (2011). Designing guidance of ventilation in ore mines;. Krivoi Rog: Krivoi Rog Technical University, 98–105.
  23. Kortnik, J. (2003). Backfilling waste material composites environmental impact assessment. South African Institute of Mining and Metallurgy, 519–524.
  24. Krupnik, L. A., Shaposhnik, Y. N., Shaposhnik, S. N., Tursunbaeva, A. K. (2013). Backfilling technology in Kazakhstan mines. Journal of Mining Science, 82–89.
  25. Ward, C. R, French, D., Jankowski, J. (2007). The use of coal combustion products in mine backfill applications. Co-operative Research Centre for Coal in Sustainable Development, 341–371.
  26. Lyashenko, V. I., Dyadechkin, N. I. (2011). Improving of backfill technology operations in underground mining of uranium deposits. News of Universities. Mining Journal, 9–17.
  27. Ghoreishi-Madiseh, S. A., Hassani, F., Abbasy, F., Mohammadian, A. (2011). Numerical modeling of thawing in frozen rocks of underground mines caused by backfilling. International journal of rock mechanics and mining sciences, 1068–1076.
  28. Galkin, A. F. (2008). Regulation of thermal regime at mining excavation in frozen rocks. Labour Safety in Industry, 17–21.
  29. Andreev, M. N., Boguslavskiy, E. I. (2011). Development of stowing material and test its strength properties. Notes of Mining Institute, 130–133.
  30. Zhang, H. B., Chen, Y. J. (2013). Study of the mechanism of backfill and surrounding rock of open stope during subsequent backfill mining. Advanced material research, 452–456.

Published

2014-04-14

How to Cite

Лапшин, А. А. (2014). Influence of extraction chambers backfilling on microclimat of deep mines. Eastern-European Journal of Enterprise Technologies, 2(10(68), 3–11. https://doi.org/10.15587/1729-4061.2014.22151