Numerical study of the nitrogen oxides adsorption and storage

Authors

  • Светлана Алексеевна Примиская National Technical University of Ukraine "Kyiv Polytechnic Institute" Prospect, 37, Building 4, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-5832-0686
  • Юрий Александрович Безносик National Technical University of Ukraine "Kyiv Polytechnic Institute" Prospect, 37, Building 4, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-7425-807X
  • Владимир Петрович Решетиловский Institute Technical Chemistry, Technical Dresden University D-01062 Dresden, Ukraine https://orcid.org/0000-0002-2333-798X

DOI:

https://doi.org/10.15587/1729-4061.2014.22399

Keywords:

nitrogen oxides, modeling, adsorption, storage, zeolites

Abstract

Adsorption of nitrogen oxides in the micropores of solid sorbent becomes an alternative to storage of compressed gas for the next decades. Thus, the effectiveness of the method of nitrogen oxides concentration in the zeolite micropores is experimentally investigated. The model of mass transfer in the adsorber is presented as non-equilibrium. The formulated mathematical problem is a system of three equations: the kinetic equation, the equilibrium equation and the continuity equation. Solution of the mathematical model was achieved using the finite difference method. Comparison and agreement of the numerical results of the developed model with experimental data was performed, the agreement is within 10-12%. When modeling numerical calculations, the complex of temperatures of 298-318 K and pressure of 0.15-3.5 MPa in the adsorber was covered. Based on the obtained data it was concluded that storage of nitrogen oxides in the adsorber, filled with zeolite is an efficient method of concentrating nitrogen oxides (twice more efficiently compared with the conventional gas compression). Mathematical model adequately describes the concentration process, it is amenable to direct solution and can be used in practice to optimize the operation of adsorber and forecast its basic performance features. This technology also allows to reduce the operating pressure that is a very important economic and technological factor in implementing the process at the industrial level.

Author Biographies

Светлана Алексеевна Примиская, National Technical University of Ukraine "Kyiv Polytechnic Institute" Prospect, 37, Building 4, Kyiv, Ukraine, 03056

PhD, Senior Lecturer

Department of Cybernetics CTP

Юрий Александрович Безносик, National Technical University of Ukraine "Kyiv Polytechnic Institute" Prospect, 37, Building 4, Kyiv, Ukraine, 03056

Ph.D., Associate Professor

Department of Cybernetics CTP

Владимир Петрович Решетиловский, Institute Technical Chemistry, Technical Dresden University D-01062 Dresden

Professur für Technische Chemie

References

  1. Примиська, С. О. Очищення хвостових газів виробництва нітратної кислоти [Текст] / С. О. Примиська, Ю. О. Безносик // Східно-Європейський журнал передових технологій. – 2012. – № 1/6 (55). – С. 24–27.
  2. Примиська, С. О. Цеоліти в процесах очистки газу від шкідливих речовин [Текст] : ХХІ Укр. сем. / С. О. Примиська, Ю. О. Безносик // Мембранні і сорбційні процеси та технології. – Київ. – 2011. – С. 63–64.
  3. Jornandes, D. S. Mathematical Modelling for the Adsorption Process of CO2 in Nanopores of Catalytic Particles in a Fixed Bed Reactor Using Numeral Inverse Laplace Transform [Text] / D. S. Jornandes, C. O. Claudio // The Italian Association of Chemical Engineering. – 2013. – Vol. 35. – P. 829–834.
  4. Cosoli, P. Hydrogen sulphide removal from biogas by zeolite adsorption Part I. GCMC molecular simulations [Text] / C. Paolo, M. Ferrone, S. Pricl, M. Fermeglia // Chemical Engineering Journal. – 2008. – № 145. – P. 86–92.
  5. Passos, C. N. Simulation of stationary, stream-less, multiconnected equilibrium-stage gas adsorption process [Text] / C. N. Passos, J. L. de Medeiros // Latin American Applied Research. – 2010. – № 31. – P. 539–546.
  6. Ермаков, А. А. Воздействие щелочной обработки на адсорбционные свойства синтетических формованных цеолитов [Текст] / А. А. Ермаков // Тр. ТГТУ, М. – 2001. – № 8. – С. 161–165.
  7. Jong-Duk, K. Non-isothermal adsorption of nitrogen - carbon dioxide mixture in a fixed bed of Zeolite – X / K. Jong-Duk // Chem. Eng. Department Advanced Institute of Science and Technology Journal of chemical engineering of Japan. – 2004. – Vol. 27, № 1. – P. 45–52.
  8. Жанпеисов, Н. У. Квантохимичний расчет относительно структуры и адсорбционных свойств NO и N2O нa Ag+ и Cu+ – ионообменных формах цеолитов [Текст] / Н. У. Жанпеисов, M. В. Мацкова // Структурная Химия. – 2003. – T. 1, № 3. – C. 247–255.
  9. Freeman, E. The application of thermoanalysis technique to reaction kinetics [Text] / E. Freeman, B. Carrol // J. Phys. Chem. – 1958. – Vol. 62, № 4. – P. 394–397.
  10. Prymyska, S. Zeolites in the gas purification processes: investigation and simulation [Text] : inter. conf. / S. Prymyska, Yu. Beznosyk, W. Reschetilowski // Chemical Reactors CHEMREACTOR-19. – Austria, Vienna. – 2010. – P. 400–402.
  11. Terzyk, A. P. What kind of pore size distribution is assumed in the Dubinin–Astakhov adsorption isotherm equation [Text] / A. P. Terzyk, P. A. Gauden, P. Kowalczyk // Carbon. – 2002. – № 40. – P. 2879–2886.
  12. Pandey, P. K. A Non-Classical Finite Difference Method for Solving Two Point Boundary Value Problems [Text] / P. K. Pandey // The Pacific Journal of Science and Technology. – 2013. – № 14( 2). – Р. 147–152.
  13. Грег, С Адсорбция, удельная поверхность, пористость [Текст] / С. Грег, К. Синг; Пер. с англ. – М., 1984. – 306 с.
  14. Rudzinski, W Equilibria and dynamics of gas adsorption on heterogeneous solid surfaces [Text] / W. Rudzinski, WA. Steele, G. Zgrablich // Amsterdam: Elsevier. – 1997. – 883 p.
  15. Prymyska, S., Beznosyk, Yu. (2012). Clean tail gas of nitric acid production. Eastern-European Journal of Enterprise Technologies, 1/6 (55), 24–27.
  16. Prymyska, S., Beznosyk, Yu. (2011). Zeolites in the process of gas purification from harmful substances. Membrane and Sorption processes and technology. Kyiv, 63–64.
  17. Jornandes, D. S., Claudio, C. O. (2013). Mathematical Modelling for the Adsorption Process of CO2 in Nanopores of Catalytic Particles in a Fixed Bed Reactor Using Numeral Inverse Laplace Transform. The Italian Association of Chemical Engineering, 35, 829–834.
  18. Cosoli, P., Ferrone, M., Pricl, S., Fermeglia, M. (2008). Hydrogen sulphide removal from biogas by zeolite adsorption Part I. GCMC molecular simulations. Chemical Engineering Journal, 145, 86–92.
  19. Passos, C. N., Medeiros J. L. (2010). Simulation of stationary, streamless, multiconnected equilibrium-stage gas adsorption process. Latin American Applied Research, 31, 539–546.
  20. Ermakov, A. A. (2001). Effects of alkali treatment on the adsorption properties of synthetic molded zeolites. Proc. TGTU. Moscow, 8, 161–165 .
  21. Jong-Duk, K. (2004). Non-isothermal adsorption of nitrogen - carbon dioxide mixture in a fixed bed of ZEOLITE. Chem. Eng. Department Advanced Institute of Science and Technology Journal of chemical engineering of Japan., 27 (1), 45–52.
  22. Zhanpeisov, N. U., Matskova, M. V. (2003). Kvantohimichny raschet structure and adsorption properties of NO and N2O Ag + and Cu+ – ion-exchange forms of zeolites. Structural Chemistry, 1 (3), 247–255.
  23. Freeman, E., Carrol, B. (1958). The application of thermoanalysis technique to reaction kinetics. J. Phys. Chem., 62 (4), 394–397.
  24. Prymyska, S., Beznosyk, Yu., Reschetilowski, W. (2010). Zeolites in the gas purification processes: investigation and simulation. International Conference on Chemical Reactors CHEMREACTOR-19. Austria, Vienna, 400-402.
  25. Terzyk, A. P., Gauden, P. A., Kowalczyk, P. (2002). What kind of pore size distribution is assumed in the Dubinin–Astakhov adsorption isotherm equation. Carbon, 40, 2879–2886.
  26. Pandey, P. K. (2013). A Non-Classical Finite Difference Method for Solving Two Point Boundary Value Problems. The Pacific Journal of Science and Technology, 14(2), 147–152.
  27. Greg, S., Singh, K. (1984). The adsorption, surface area, porosity. M., 306.
  28. Rudzinski, W., Steele, W. A., Zgrablich, G. (1997). Equilibria and dynamics of gas adsorption on heterogeneous solid surfaces. Amsterdam: Elsevier, 883.

Published

2014-04-11

How to Cite

Примиская, С. А., Безносик, Ю. А., & Решетиловский, В. П. (2014). Numerical study of the nitrogen oxides adsorption and storage. Eastern-European Journal of Enterprise Technologies, 2(6(68), 46–49. https://doi.org/10.15587/1729-4061.2014.22399

Issue

Section

Technology organic and inorganic substances