The mathematical model of non-certified fuel combustion

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.22420

Keywords:

mathematical model, uncertified gas, calorific value of gas, steam boiler, common steam pipe

Abstract

The process of uncertified fuel combustion with a variable calorific value of gas at a petroleum refinery for generating steam is considered in the paper. The main purpose of the paper is to develop a mathematical model of three steam boilers, working for one steam pipe, for combustion of gas fuels of varying composition. Effective combustion of the uncertified fuel will allow reducing not only СО2 emissions to the environment, but also reducing the consumption of natural gas. In the proposed model, the incremental equations were considered to linearize them. The given mathematical model allows obtaining a predetermined steam rate for the gases under consideration. This model is applicable to gas fuel with a variable calorific value in a petroleum refinery. The next step for solving the problem is to automate the process of boiler control.

Author Biographies

Татьяна Сергеевна Добровольская, Odessa National Polytechnic University Shevchenko Ave 1, Odessa, Ukraine, 65044

Graduate student

Department of automation of processes of heat power

Максим Витальевич Максимов, Odessa National Polytechnic University Shevchenko Ave 1, Odessa, Ukraine, 65044

Doctor of Technical Sciences, Professor, Head of Department

Department of automation of processes of heat power

Вадим Феликсович Ложечников, Odessa National Polytechnic University Shevchenko Ave 1, Odessa, Ukraine, 65044

Docent

Department of automation of processes of heat power

Андрей Владимирович Бондаренко, Odessa National Polytechnic University Shevchenko Ave 1, Odessa, Ukraine, 65044

Graduate student

Department of automation of processes of heat power

References

  1. Boisvert, P. G. Fuel sparing: Control of industrial furnaces using process gas as supplemental fuel, Canada [Text] / P. G. Boisvert, A. Runstedtler// Applied Thermal Engineering. – 2014. – Vol. 65. – P. 293–298.
  2. Davoudia, M. The major sources of gas flaring and air contamination in the natural gas processing plants: A case study, Iran [Text] / M. Davoudia, M. R. Rahimpoura, S. M. Jokara, F. Nikbakhtb, H. Abbasfard // Journal of Natural Gas Science and Engineering. – 2013. – Vol. 13 – P. 7–19.
  3. Berghout, N. Techno-economic performance and challenges of applying CO2 capture in the industry: A case study of five industrial plants, the Netherlands [Text] / N. Berghout, M. Broek, A. Faaij // International Journal of Greenhouse Gas Control. – 2013. – Vol. 17. – P. 259–279.
  4. Liu, H. Optimization of PEM fuel cell flow channel dimensions—Mathematic modeling analysis and experimental verification, USA [Text] / H. Liu, P. Li, K. Wang // International Journal of Hydrogen Energy. – 2013. – Vol. 38. – P. 9835–9846.
  5. Tucakovica, D. Possibilities for reconstruction of existing steam boilers for the purpose of using exhaust gases from 14 MW or 17 MW gas turbine, Serbia [Text] / D. Tucakovica, G. Stupara, T. Zivanovica, M. Petrovica, S. Belosevic // Applied Thermal Engineering. – 2013. – Vol. 56. – P. 83–90.
  6. Rusinowski, H. Hybrid model of steam boiler, Poland [Text] / H. Rusinowski, W. Stanek // Energy. – 2010. – Vol. 35. – P.1107–1113.
  7. Bujak, J. Optimal control of energy losses in multi-boiler steam systems, Poland [Text] / J. Bujak //Energy. – 2009. – Vol. 34. – P. 1260–1270.
  8. Профос, П. Регулирование паросиловых установок [Текст] / П. Профос. – М.: Энергия, 1967. – 368 с.
  9. Александров, В. П. Паровые котлы малой и средней мощности [Текст] / В. П. Александров. – М.:Энергия,1972. – 200 с.
  10. Вукалович, М. П. Термодинамические свойства воды и водяного пара [Текст] / М. П. Вукалович. – М: Госэнергоиздата, 1955. – 93 с.
  11. Boisvert, P. G., Runstedtler, A. (2014). Fuel sparing: Control of industrial furnaces using process gas as supplemental fuel. Applied Thermal Engineering, 65, 293–298.
  12. Davoudia, M., Rahimpoura, M. R., Jokara, S. M., Nikbakhtb, F., Abbasfard, H. (2013). The major sources of gas flaring and air contamination in the natural gas processing plants: A case study. Journal of Natural Gas Science and Engineering, 13, 7–19.
  13. Berghout, N., Broek, M., Faaij, A. (2013). Techno-economic performance and challenges of applying CO2 capture in the industry: A case study of five industrial plants. International Journal of Greenhouse Gas Control, 17, 259–279.
  14. Liu, H., Li. P., Wang, K. (2013). Optimization of PEM fuel cell flow channel dimensions—Mathematic modeling analysis and experimental verification. International Journal of Hydrogen Energy, 38, 9835–9846.
  15. Tucakovica, D., Stupara, G., Zivanovica, T., Petrovica, M., Belosevic, S. (2013). Possibilities for reconstruction of existing steam boilers for the purpose of using exhaust gases from 14 MW or 17 MW gas turbine. Applied Thermal Engineering, 56, 83–90.
  16. Rusinowski, H., Stanek, W. (2010). Hybrid model of steam boiler. Energy, 35, 1107–1113.
  17. Bujak, J. (2009). Optimal control of energy losses in multi-boiler steam systems. Energy, 34, 1260–1270.
  18. Profos, P. (1967). The Regulation of steam power plants. Moskow, USSR: Energy, 368.
  19. Aleksandrov, V. P. (1972). The steam boilers for small and medium power. Moskow, USSR: Energy, 200.
  20. Vukalovich, М. P. (1955). The thermodynamic properties of the water and the steam. Moskow, USSR: State Energy Publishing, 93.

Published

2014-04-22

How to Cite

Добровольская, Т. С., Максимов, М. В., Ложечников, В. Ф., & Бондаренко, А. В. (2014). The mathematical model of non-certified fuel combustion. Eastern-European Journal of Enterprise Technologies, 2(8(68), 44–51. https://doi.org/10.15587/1729-4061.2014.22420

Issue

Section

Energy-saving technologies and equipment