Thermodynamic limit of surface layers of polymer linings in friction interaction

Authors

  • Дмитрий Юрьевич Журавлев Ivano-Frankivsk National Technical University of Oil and Gas 15 Karpatska Str., Ivano-Frankivsk, Ukraine, 76000, Ukraine https://orcid.org/0000-0002-2662-8694

DOI:

https://doi.org/10.15587/1729-4061.2014.22421

Keywords:

surface layer, electrons and ions (particles), thermodynamic limit, statistical mechanics

Abstract

As the analyses of scientific studies showed, thermodynamic processes occur in the surface layers of metal-polymer friction pairs of drawworks band-shoe brake in their friction interaction. During electrothermomechanical friction of friction linings and brake pulley, the latter stores energy, its surfaces undergo forced cooling, and linings, which are placed on the band, are exposed to the physicochemical transformation. Therefore, there is a need to study the behavior of surface and subsurface layers of polymer linings in different thermodynamic states since lining is an element of friction pairs and affects the drawworks band-shoe brake friction unit efficiency. Statistical mechanics, applied to the surface layer of polymer lining and patterns of changing the studied parameters in evaluating the thermodynamic limit are first considered in the paper. Adding more and more particles (ions and electrons) causes, respectively, changes in the volume and, thus, the average environment of any particle gradually becomes virtually unchanged. The results of experimental studies of the first-order phase transition, conducted in stand conditions have shown that, at the temperature increase on the friction surfaces of friction pairs from the set, there are current fluctuations, which will continue to exist at the temperature increase, which adversely affects the friction units performance. The research results are important since they answer the questions: what processes occur in friction pairs, what leads to their rapid deterioration, and consequently failure of the drawworks band-shoe brake friction unit.

Author Biography

Дмитрий Юрьевич Журавлев, Ivano-Frankivsk National Technical University of Oil and Gas 15 Karpatska Str., Ivano-Frankivsk, Ukraine, 76000

Candidate of Technical Sciences, Associate Professor
Department of Mechanical Engineering

References

  1. Чичинадзе, А. В. Материалы в триботехнике нестационарных процессов [Текст] / А. В. Чичинадзе, Р. М. Матвеевский, Э. Д. Браун и др. – М.: Наука, 1986. – 245 с.
  2. Горячева, И. Г. Механика фрикционного взаимодействия [Текст] / И. Г. Горячева. – М.: Наука, 2001. – 435 с.
  3. Евдокимов, Ю. А. Тепловая задача металлополимерных трибосопря-жений [Текст] / Ю. А. Евдокимов, В. И. Колесников, С. А. Подрезов. – Ростов на Дону: Из-во Ростовского ун-та, 1987. – 168 с.
  4. Любимов, Д. Н. Физико-химические процессы при трении. Учеб. пособие [Текст] / Д. Н. Любимов, В. А. Рыжиков / Шахтинский институт ЮРГТУ. – Новочеркаск: ЮРГУ, 2003. – 142 с.
  5. Колесников, В. И. Теплофизические процессы в металлополимерных трибосистемах [Текст] / В. И. Колесников. – М.: Наука, 2003. – 279 с.
  6. Джанахмедов, А. Х. Нефтяная трибология [Текст] / А. Х. Джанахмедов. – Баку: Элм, 2003. – 326 с.
  7. Балеску, Р. Равновесная и неравновесная статистическая механика [Текст] / Р. Балеску. – М.: Из-во. Мир, Т.1, 1978. – 405 с.
  8. Лернер, М. И. Технология получения, характеристики и некоторые области применения электропорошков [Текст] / М. И. Лернер, Н. В. Сваровская, С. Г. Псахье, О. В. Бакина // Российские нанотехнологии. – 2009. – Т. 4, № 11–12. – С. 56–68.
  9. Лернер, М. И. Формирование наночастиц при воздействии на металлический проводник импульса тока большой мощности [Текст] / М. И. Лернер, В. В. Шаманский // Журнал структруной химии. – 2004. – Т. 45. – С. 112–115.
  10. Котов, Ю. А. Исследование частиц образующихся при электрическом взрыве проводников [Текст] / Ю. А. Котов, Н. А. Яворский // Журнал физика и химия обработки материалов – 1978. – № 4. – С.24–29.
  11. Chichinadze, A. V., Matveevskiy, R. M., Brown, E. D. (1986). Materials in Tribotechnics of the Nonstationary Processes. Moscow, USSR: Science, 245.
  12. Horiachova, I. H. (2001). Mechanics of Friction Interaction. Moscow, Russia: Science, 435.
  13. Yevdokimov, Yu. A., Kolesnikov, V. I. (1987). Thermal Problem of Metal-Polymer Triboconjugation. Rostov na Donu, USSR: University of Rostov na Donu, 168.
  14. Lyubimov, D. N. (2003). Physico-chemical processes in friction. Novocherkask, Russia: Shahtinskii SRSTU Institute, 142.
  15. Kolesnikov, V. I. (2003). Thermophysical processes in metalpolymer tribosystems. Moscow, Russia: Science, 279.
  16. Dzhanakhmedov, A. H. (2003). Oil Tribology. Baku, Azerbaijan: Elm, 326.
  17. Balesku, R. (1978). Equilibrium and Nonequilibrium Statistical Mechanics. Moscow, USSR: Peace, 405.
  18. Lerner, M. I., Svarovskaya, N. V., Psahye, S. H., Bakina, O. V. (2009). Technology of Preparation, Characteristic and Application of Electro-powders. Russian Nanotechnologies, 4 (11), 56–68.
  19. Lerner, M. I., Shamanskiy, V. V. (2004). Formation of Nanoparticles while Influencing Upon the Metallic Conductor of the Pulse of the High-Powered Current. Journal of Structural Chemistry, 45, 112–115.
  20. Kotov, Yu. A., Yavorskiy, N. A. (1978). Investigation of the Particles Formed by Electric Explosion of Conductors. Journal of Physics and Chemistry of Materials Processing, 4, 24–29.

Published

2014-04-15

How to Cite

Журавлев, Д. Ю. (2014). Thermodynamic limit of surface layers of polymer linings in friction interaction. Eastern-European Journal of Enterprise Technologies, 2(11(68), 20–26. https://doi.org/10.15587/1729-4061.2014.22421

Issue

Section

Materials Science