Determination of the influence of aluminum phosphate on the properties of quartz ceramics

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.224220

Abstract

One of the significant disadvantages of quartz glass-based materials is their tendency to crystallize cristobalite during firing and, as a consequence, a significant deterioration in performance. In order to prevent crystallization of quartz ceramics during sintering, a number of additives are used. However, all known options some disadvantages, namely, relatively low strength values and increased coefficient of linear thermal expansion of products.

In this regard, a promising area of research is to study the effect of aluminum phosphate additives on the properties of quartz ceramics. According to the totality of properties, the addition of AlPO4 in an amount of 20 wt % has the most positive effect on the characteristics of quartz ceramics. According to differential thermal analysis, it is noted that up to a temperature of 1,200 °C, no noticeable phase and modification transformations occur in the base mixtures. In the course of the work, it was found that the most appropriate firing mode is as follows: oxidizing medium; the products are immersed in a hot furnace, after being held at the maximum temperature, they are removed from the hot furnace, cooling occurs slowly in the air. The materials obtained in this way are characterized by the following properties: α=31.6·10-7 deg-1; σcomp=153 MPa; P=2.7 %; tgδ and ε (frequency 1010 Hz, temperature 20 °C) 0.001 and 10, respectively. It is noted that the main crystal phase prevailing in the samples is aluminum phosphate. The microstructure of the material is characterized by the presence of a small number of residual pores and a densely sintered shard.

The proposed solution will significantly reduce power consumption, improve production performance and increase the basic properties of polyfunctional quartz ceramic products

Author Biographies

Olena Karasik, Ukrainian State University of Chemical Technology

PhD, Associate Professor

Department of Chemical Technology of Ceramics, Glass and Building Materials

Tatyana Kozyreva, Ukrainian State University of Chemical Technology

Senior Researcher

Department of Chemical Technology of Ceramics, Glass and Building Materials

Vladyslav Dushyn, Sumy National Agrarian University

PhD, Associate Professor

Department of Building Structures

References

  1. Romashin, A. G. (2004). Nauchnye i prakticheskie aspekty izgotovleniya krupnogabaritnyh, slozhnoprofil'nyh izdeliy iz kvartsevoy keramiki. Chast' I. Statisticheskiy analiz ustoychivosti tehnologicheskogo protsessa izgotovleniya izdeliy. Novye Ogneupory (New Refractories), 9, 34–40.
  2. Romashin, A. G. (2004). Nauchnye i prakticheskie aspekty izgotovleniya krupnogabaritnyh, slozhnoprofil'nyh izdeliy iz kvartsevoy keramiki. Chast' II. Analiz vzaimosvyazi urovnya svoystv tehnologicheskih parametrov s kachestvom izdeliy iz kvartsevoy keramiki. Novye Ogneupory (New Refractories), 11, 20–27.
  3. Pivinskii, Y. E. (2017). The half of a century period of the domestic ceramics technology development. Part I. Novye Ogneupory (New Refractories), 3, 105–112. doi: https://doi.org/10.17073/1683-4518-2017-3-105-112
  4. Pivinskii, Y. E. (2017). Half a century development of the domestic quartz ceramics industry. Part 2. Novye Ogneupory (New Refractories), 5, 23–30. doi: https://doi.org/10.17073/1683-4518-2017-5-23-30
  5. Pivinskii, Y. E. (2017). Half a century development of the domestic quartz ceramics industry. Part 3. Novye Ogneupory (New Refractories), 7, 12–19. doi: https://doi.org/10.17073/1683-4518-2017-7-12-19
  6. Romashin, A. G., Rusin M. Yu., Boroday, F. Ya. (2004). Konstruktsionnye keramicheskie i voloknistye materialy na osnove kvartsevogo stekla. Novye Ogneupory (New Refractories), 10, 12–18.
  7. Kilikoglou, V., Vekinis, G., Maniatis, Y., Day, P. M. (1998). Mechanical performance of quartz-tempered ceramics: Part I, strength and toughness. Archaeometry, 40 (2), 261–279. doi: https://doi.org/10.1111/j.1475-4754.1998.tb00837.x
  8. Suzdal'tsev, E. I. (2014). Ceramic radio-transparent materials yesterday, today and tomorrow. Novye Ogneupory (New Refractories), 10, 5–18. Available at: https://newogneup.elpub.ru/jour/article/view/560/565
  9. Suzdal'tsev, E. I. (2002). Radioprozrachnye, vysokotermostoykie materialy XXI veka. Ogneupory i tehnicheskaya keramika, 3, 42–50.
  10. Khomenko, E. S., Zaichuk, A. V., Karasik, E. V., Ivchenko, V. D., Sribniak, N. M., Datsenko, B. M. (2020). Improvement of strength characteristics of quartz ceramics. Functional Materials, 27 (2), 264–269. doi: https://doi.org/10.15407/fm27.02.264
  11. Polyakova, I. G. (2012). The Main Silica Phases and Some of Their Properties. Glass: selected properties and crystallization, 197–268. doi: https://doi.org/10.1515/9783110298581.197
  12. Chaklader, A. C. D., Roberts, A. L. (1961). Transformation of Quartz to Cristobalite. Journal of the American Ceramic Society, 44 (1), 35–41. doi: https://doi.org/10.1111/j.1151-2916.1961.tb15344.x
  13. Pagliari, L., Dapiaggi, M., Pavese, A., Francescon, F. (2013). A kinetic study of the quartz–cristobalite phase transition. Journal of the European Ceramic Society, 33 (15-16), 3403–3410. doi: https://doi.org/10.1016/j.jeurceramsoc.2013.06.014
  14. Holmquist, S. B. (1961). Conversion of Quartz to Tridymite. Journal of the American Ceramic Society, 44 (2), 82–86. doi: https://doi.org/10.1111/j.1151-2916.1961.tb15355.x
  15. Damby, D. E., Llewellin, E. W., Horwell, C. J., Williamson, B. J., Najorka, J., Cressey, G., Carpenter, M. (2014). The α–β phase transition in volcanic cristobalite. Journal of Applied Crystallography, 47 (4), 1205–1215. doi: https://doi.org/10.1107/s160057671401070x
  16. Kolobov, A. Y., Sycheva, G. A. (2020). Features of Crystallization and Characteristics of Quartz Glass Obtained on OAO Dinur Plasma Torches from the Quartz Sand of the Ramenskii Deposit. Glass Physics and Chemistry, 46 (3), 249–255. doi: https://doi.org/10.1134/s1087659620030049
  17. Nasyrov, R. S., Popov, S. A. (2012). Melting conditions for quartz glass of high purity and structural perfection. Glass and Ceramics, 69 (7-8), 224–228. doi: https://doi.org/10.1007/s10717-012-9451-z
  18. Borodaj, F. J., Suzdal'tsev, E. I., Shushkova, O. P. (2012). Pat. No. RU2513745C2. Method of producing quartz ceramics with lower annealing temperature. No. 2012127968/03; declareted: 03.07.2012; published: 20.04.2014, Bul. No. 11.
  19. Ivakhnenko, Y. A., Varrik, N. M., Maksimov, V. G. (2016). The high-temperature radiolucent ceramic composite materials for the radomes and other products of aviation engineering (review). Proceedings of VIAM, 5, 36–43. doi: https://doi.org/10.18577/2307-6046-2016-0-5-5-5
  20. Khomenko, E. S., Karasik, E. V., Goleus, V. I. (2017). Impact of kaolin addition on properties of quartz ceramics. Functional Materials, 24 (4), 593–598. doi: https://doi.org/10.15407/fm24.04.593
  21. Khomenko, E. S., Zaichuk, A. V., Karasik, E. V., Kunitsa, A. A. (2018). Quartz ceramics modified by nanodispersed silica additive. Functional materials, 25 (3), 613–618. doi: https://doi.org/10.15407/fm25.03.613
  22. Nosenko, A. V., Hordieiev, Y. S., Goleus, V. I. (2018). Negative thermal expansion of titanium (III) oxide. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 87–91. Available at: https://udhtu.edu.ua/public/userfiles/file/VHHT/2018/1/Nosenko.pdf
  23. Devamani, R., Alagar, M. (2012) Synthesis and Characterization of Aluminium Phosphate Nanoparticles. International Journal of Applied Science and Engineering Research, 1 (6), 769–775. doi: https://doi.org/10.6088/ijaser.0020101078
  24. Pivinskii, Y. E. (2007). Nanodisperse silica and some aspects of nanotechnologies in the field of silicate materials science. Part 2. Refractories and Industrial Ceramics, 48 (6), 435–443. doi: https://doi.org/10.1007/s11148-008-9009-3

Downloads

Published

2021-02-10

How to Cite

Karasik, O., Kozyreva, T., & Dushyn, V. (2021). Determination of the influence of aluminum phosphate on the properties of quartz ceramics. Eastern-European Journal of Enterprise Technologies, 1(6 (109), 15–21. https://doi.org/10.15587/1729-4061.2021.224220

Issue

Section

Technology organic and inorganic substances