Establishing patterns in the influence of micro- and nano-dispersed mineral additives on the water resistance of construction gypsum

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.224221

Abstract

This paper reports a study into the effect of mineral fillers such as ground granulated blast furnace slag, microsilica, and nano dispersed alumina on the structure formation and water resistance of gypsum. The theoretical models of gypsum stone structure with mineral fillers have been built and described, taking into consideration the sign of the surface charge of gypsum crystals and filler particles. In accordance with the developed models, the fillers enable the formation of a dense structure of gypsum stone as a compositional material with a large number of electro-heterogeneous contacts. With this structure, the gypsum dihydrate crystals are maximally protected from contact with water and dissolution. The electron microscopic study of the gypsum stone with mineral fillers has been carried out, which has confirmed that the rational ratio of gypsum to slag ensures the densest structure of the stone. The dependences of the strength of gypsum stone in the dry and water-saturated condition and a water resistance factor (softening) on the content of slag, micro-and nano dispersed filler, a water-hardened ratio, have been experimentally established. The introduction of a rational amount of microfiller with a negative surface charge (microsilica) has increased the water resistance ratio by 0.2‒0.4 amounting to a value of 1. The introduction of a rational amount of micro-filler with a positive surface charge (nano dispersed alumina) has improved the water resistance ratio by 0.8 amounting to a value of 0.9. The established mechanism that forms the gypsum stone structure with fillers would make it possible to develop the compositions for a mineral binder based on gypsum, which could be used under wet operational conditions

Author Biographies

Andrii Plugin, Ukrainian State University of Railway Transport

Doctor of Technical Sciences, Professor, Head of Department

Department of Railway Track and Transport Structures

Artem Iefimenko, Ukrainian State University of Railway Transport

Postgraduate Student

Department of Building Materials and Structures

Olga Borziak, Ukrainian State University of Railway Transport

PhD, Associate Professor

Department of Building Materials and Structures

Edwin Gevorkyan, Ukrainian State University of Railway Transport

Doctor of Technical Sciences, Professor

Department of Quality, Standardization, Certification and Manufacturing Technology of Products

Oleksii Pluhin, Ukrainian State University of Railway Transport

PhD, Associate Professor

Department of Structural Mechanics and Hydraulics

References

  1. Lushnikova, N., Dvorkin, L. (2016). Sustainability of gypsum products as a construction material. Sustainability of Construction Materials, 643–681. doi: https://doi.org/10.1016/b978-0-08-100370-1.00025-1
  2. Petropavlovskaya, V., Buryanov, A., Novichenkova, T., Petropavlovskii, K. (2018). Gypsum composites reinforcement. IOP Conference Series: Materials Science and Engineering, 365, 032060. doi: https://doi.org/10.1088/1757-899x/365/3/032060
  3. Fischer, H.-B., Vtorov, B. (2002). Zur charakterisierung historischer gipsmörtel. ZKG International, 55 (5), 92–99. Available at: http://wtorov.narod.ru/Publikaz/ZKG_2002_1/Histor-Putz.htm
  4. Buryanov, А., Petropavlovskaya, V., Novichenkova, Т. (2013). Structuring in Systems on the Basis of Calcium Sulfate Dihydrate. Applied Mechanics and Materials, 467, 91–96. doi: https://doi.org/10.4028/www.scientific.net/amm.467.91
  5. Wansom, S., Chintasongkro, P., Srijampan, W. (2019). Water resistant blended cements containing flue-gas desulfurization gypsum, Portland cement and fly ash for structural applications. Cement and Concrete Composites, 103, 134–148. doi: https://doi.org/10.1016/j.cemconcomp.2019.04.033
  6. Zavadskaya, L. V., Berdov, G. I. (2016). Change of Structure and Strength of Gypsum at Adding Disperse Mineral Additives. Research Journal of Applied Sciences, Engineering and Technolog, 12 (1), 86–93. doi: https://doi.org/10.19026/rjaset.12.2306
  7. Sun, H., Qian, J., Yang, Y., Fan, C., Yue, Y. (2020). Optimization of gypsum and slag contents in blended cement containing slag. Cement and Concrete Composites, 112, 103674. doi: https://doi.org/10.1016/j.cemconcomp.2020.103674
  8. Egorova, A. D., Filippova, K. E. (2019). Ultra-disperse modifying zeolite-based additive for gypsum concretes. IOP Conference Series: Materials Science and Engineering, 687, 022030. doi: https://doi.org/10.1088/1757-899x/687/2/022030
  9. Pervyshin, G. N., Yakovlev, G. I., Gordina, A. F., Keriene, J., Polyanskikh, I. S., Fischer, H.-B. et. al. (2017). Water-resistant Gypsum Compositions with Man-made Modifiers. Procedia Engineering, 172, 867–874. doi: https://doi.org/10.1016/j.proeng.2017.02.087
  10. Yakovlev, G., Polyanskikh, I., Fedorova, G., Gordina, A., Buryanov, A. (2015). Anhydrite and Gypsum Compositions Modified with Ultrafine Man-Made Admixtures. Procedia Engineering, 108, 13–21. doi: https://doi.org/10.1016/j.proeng.2015.06.195
  11. Sanytsky, M., Kropyvnytska, T., Fischer, H.-B., Kondratieva, N. (2019). Performance of Low Carbon Modified Composite Gypsum Binders with Increased Resistance. Chemistry & Chemical Technology, 13 (4), 495–502. doi: https://doi.org/10.23939/chcht13.04.495
  12. Kondratieva, N., Barre, M., Goutenoire, F., Sanytsky, M. (2017). Study of modified gypsum binder. Construction and Building Materials, 149, 535–542. doi: https://doi.org/10.1016/j.conbuildmat.2017.05.140
  13. Kondratieva, N., Barre, M., Goutenoire, F., Sanytsky, M., Rousseau, A. (2020). Effect of additives SiC on the hydration and the crystallization processes of gypsum. Construction and Building Materials, 235, 117479. doi: https://doi.org/10.1016/j.conbuildmat.2019.117479
  14. Suárez, F., Felipe-Sesé, L., Díaz, F. A., Gálvez, J. C., Alberti, M. G. (2020). On the fracture behaviour of fibre-reinforced gypsum using micro and macro polymer fibres. Construction and Building Materials, 244, 118347. doi: https://doi.org/10.1016/j.conbuildmat.2020.118347
  15. Plugin, A. N., Plugin, A. A., Kalinin, O. A., Miroshnichenko, S. V., Plugin, D. A., Kaganovskiy, A. S. et. al.; Plugin, A. N. (Red.) (2012). Osnovy teorii tverdeniya, prochnosti, razrusheniya i dolgovechnosti portlandtsementa, betona i konstruktsiy iz nih. Vol. 3. Teoriya prochnosti, razrusheniya i dolgovechnosti betona, zhelezobetona i konstruktsiy iz nih. Kyiv: Nauk. dumka, 288.
  16. Plugin, A. N., Fisher, H.-B., Plugin, A. A., Rapina, K. A. (2010). Mehanizm strukturoobrazovaniya i degidratatsii gipsovyh vyazhushchih. Zb. nauk. prats' UkrDAZT, 115, 5–22.
  17. Babushkin, V. I., Plugin, A. A., Kostyuk, T. A., Matvienko, V. A. (1999). Vliyanie aktivnyh poverhnostnyh tsentrov na prochnost' svezheotformovannyh melkozernistyh betonov. Naukovyi visnyk budivnytstva, 5, 85–88.
  18. Chepurna, S., Borziak, O., Zubenko, S. (2019). Concretes, Modified by the Addition of High-Diffused Chalk, for Small Architectural Forms. Materials Science Forum, 968, 82–88. doi: https://doi.org/10.4028/www.scientific.net/msf.968.82
  19. Ivashchyshyn, H., Sanytsky, M., Kropyvnytska, T., Rusyn, B. (2019). Study of low-emission multi-component cements with a high content of supplementary cementitious materials. Eastern-European Journal of Enterprise Technologies, 4 (6 (100)), 39–47. doi: https://doi.org/10.15587/1729-4061.2019.175472
  20. Krivenko, P. V., Petropavlovskyi, O., Rudenko, I., Konstantynovskyi, O. P. (2019). The Influence of Complex Additive on Strength and Proper Deformations of Alkali-Activated Slag Cements. Materials Science Forum, 968, 13–19. doi: https://doi.org/10.4028/www.scientific.net/msf.968.13
  21. Danchenko, Y., Andronov, V., Sopov, V., Khmyrov, I., Khryapynskyy, A. (2018). Acid-basic surface properties of clay disperse fillers. MATEC Web of Conferences, 230, 03004. doi: https://doi.org/10.1051/matecconf/201823003004
  22. Plugin, A. A., Pluhin, O. A., Borziak, O. S., Kaliuzhna, O. V. (2019). The Mechanism of a Penetrative Action for Portland Cement-Based Waterproofing Compositions. Lecture Notes in Civil Engineering, 34–41. doi: https://doi.org/10.1007/978-3-030-27011-7_5
  23. Sopov, V., Pershina, L., Butskaya, L., Latorets, E., Makarenko, O. (2017). The role of chemical admixtures in the formation of the structure of cement stone. MATEC Web of Conferences, 116, 01018. doi: https://doi.org/10.1051/matecconf/201711601018
  24. Plugin, A. A., Plugin, O. A., Fisher, H.-B., Shabanova, G. N. (2011). Increase of gypsum water resistance by mineral additives. Conference: 1 Weimarer Gipstagung, 435–443.
  25. Plugin, A. A., Fisher, H.-B., Borziak, O. S., Iefimenko, A. S. (2017). Influence of mineral fillers on the processes of structural formation of gypsum stone. Naukovyi visnyk budivnytstva, 90 (4), 116–119. Available at: https://vestnik%2Dconstruction.com.ua/images/pdf/4_90_2017/22.pdf
  26. Babushkin, V. I., Novikova, S. P. (1973). O roli kolloidno-himicheskih yavleniy v obemnyh izmeneniyah tsementnogo kamnya i betona. Tr. VNIIVODGEO. Moscow, 133–144.
  27. Babushkin, V. I., Kondrashchenko, E. V., Kostyuk, T. A., Novikova, S. P. (2002). K voprosu o metodologii izmereniya elektropoverhnostnyh svoystv chastits v vyazhushchih sistemah. Budivelni materialy, vyroby ta sanitarna tekhnika, 17, 38–43.

Downloads

Published

2021-02-10

How to Cite

Plugin, A., Iefimenko, A., Borziak, O., Gevorkyan, E., & Pluhin, O. (2021). Establishing patterns in the influence of micro- and nano-dispersed mineral additives on the water resistance of construction gypsum. Eastern-European Journal of Enterprise Technologies, 1(6 (109), 22–29. https://doi.org/10.15587/1729-4061.2021.224221

Issue

Section

Technology organic and inorganic substances