Revealing the effect of catalyst concentration on the process of fuel oil refining using the technology of aerosol nano catalysis

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.224228

Abstract

The primary oil processing product is a mixture of different hydrocarbons. One of the hard-to-process petroleum products is fuel oil. This paper considers a method to derive clear (light) fractions of petroleum products by the catalytic processing of fuel oil on a zeolite-containing catalyst at 1 atm under the technological conditions of aerosol nanocatalysis. The prospect of the catalytic processing of a viscous residue ‒ fuel oil ‒ has been analyzed and estimated. The process is carried out by dispersing the catalytically active component in a vibratory-fluidized layer. Chemical transformation occurs during the constant mechanochemical activation of catalyst particles by forming an aerosol cloud in the reactive volume. Natural zeolite catalyst of the type Y was selected for research. Methods for separating the gasoline and diesel fractions of light hydrocarbons and for analyzing the gas phase have been given. The effect of the concentration of zeolite catalyst aerosol on the composition of cracking products (the yield of the gasoline and diesel fractions of light hydrocarbons) has been studied. It is noted that the rate of the course of fuel oil processing in the aerosol of the catalyst is 1.5‒2 times higher than that in thermal processing. It has been found that in fuel oil processing based on the aerosol nanocatalysis technology, the concentration of the catalyst can be controlled to produce the final product. The study results have shown that the optimal conditions for processing fuel oil in the aerosol of the catalyst should be considered 773 K, a frequency of 5 Hz, a pressure of 1 atm. At the same time, a concentration of the catalyst of 1‒5 g/m3 should be considered optimal for the output of a light fraction of hydrocarbons. In this case, the yield is up to 80 % of the fraction in the laboratory. It was found out that during the processing of fuel oil, the concentration of the catalyst makes it possible to optimize the output of light oil products under the technological conditions of aerosol nanocatalysis

Author Biographies

Serhii Leonenko, Volodymyr Dahl East Ukrainian National University

Assistant

Department of Public Administration, Management and Marketing

Sergey Kudryavtsev, Volodymyr Dahl East Ukrainian National University

PhD, Associate Professor

Department of Chemical Engineering and Ecology

Irene Glikina, Volodymyr Dahl East Ukrainian National University

Doctor of Technical Sciences, Professor

Department of Chemical Engineering and Ecology

Vadym Tarasov, Volodymyr Dahl East Ukrainian National University

PhD, Associate Professor

Department of Mining

Olena Zolotarova, Volodymyr Dahl East Ukrainian National University

PhD, Associate Professor

Department of Chemical Engineering and Ecology

References

  1. Ukraine Energy Information. Interactive Chart Ukraine Refined Oil Products Production (2019). Available at: https://www.enerdata.net/estore/energy-market/ukraine/
  2. Oil refining industry of Ukraine (2004-2007) (2008). Available at: http://ukrexport.gov.ua/eng/economy/brief/ukr/188.html
  3. Konończuk, W. (2017). The never-ending collapse. The state of the Ukrainian oil sector. Ośrodek Studiów Wschodnich im. Marka Karpia, 44. Available at: https://www.osw.waw.pl/sites/default/files/raport_never-ending_net.pdf
  4. Kaiser, M. J. (2017). A review of refinery complexity applications. Petroleum Science, 14 (1), 167–194. doi: https://doi.org/10.1007/s12182-016-0137-y
  5. Dalla Giovanna, F., Khlebinskaia, O., Lodolo, A., Miertus, S. (2003). Compendium of Used Oil Regeneration Technologies. Trieste: UNIDO, 210.
  6. Patrylak, L. K., Ionin, V. O., Bartosh, P. I., Likhnyovskyi, R. V. (2003). Comparative properties of the zeolite acid catalysts of different preparation. Kataliz i neftehimiya, 11, 25–28.
  7. Ahmetov, S. A. (2002). Tehnologii glubokoy pererabotki nefti i gaza. Ufa: Gilem, 672. Available at: https://www.studmed.ru/ahmetov-sa-tehnologii-glubokoy-pererabotki-nefti-i-gaza_3d291038be0.html
  8. Tehnicheskie harakteristiki ustanovki UKM-600 pri pererabotke mazuta ili nefti. Mini NPZ proektirovanie minizavodov po pererabotke nefti. Available at: http://www.mininpz.zx6.ru/Albom2_tkm_500/Albom_tkm_500.htm
  9. Abdullin, A. I., Siraev, I. R. (2016). Gidrokreking kak protsess polucheniya dizel'nogo topliva. Vestnik Kazanskogo tehnologicheskogo universiteta, 19 (10), 41–43. Available at: https://cyberleninka.ru/article/n/gidrokreking-kak-protsess-polucheniya-dizelnogo-topliva
  10. Mustafaeva, R. M., Salaeva, Z. Ch., Mamedaliev, G. A. (2009). Nekotorye aspekty gidrogenizatsionnoy pererabotki zhidkih produktov piroliza s tsel'yu polucheniya aromaticheskih uglevodorodov. Voprosy himii i himicheskoy tehnologii, 6, 37–42.
  11. Mustafin, I. A., Sidorov, G. M., Stankevich, K. E., Bayram-Ali, T. M., Salishev, A. I., Murtazin, E. V., Gantsev, A. V. (2018). Hydrocatalytic processes of heavy oil factions processing with use of perspective nanoscale catalysts. Fundamental research, 7, 22–28. Available at: http://fundamental-research.ru/ru/article/view?id=42201
  12. Morozov, M. A., Akimov, A. S., Fedushchak, T. A., Zhuravkov, S. P., Vlasov, V. A., Sudarev, E. A., Vosmerikov, A. V. (2018). Cracking of Heavy Hydrocarbon Feedstock in the Presence of Cobalt. Kataliz v Promyshlennosti, 18 (2), 33–38. doi: https://doi.org/10.18412/1816-0387-2018-2-33-38
  13. Davletshin, A. R., Obuhova, S. A., Halikov, D. E., Urmancheev, S. F., Vezirov, R. R. (2000). Otsenka vliyaniya rezhimnyh parametrov na gidrodinamicheskie harakteristiki voshodyashchego potoka v reaktsionnoy kamere visbrekinga. Bashkirskiy himicheskiy zhurnal, 7 (5), 64–65.
  14. Speight, J. G. (2012). Visbreaking: A technology of the past and the future. Scientia Iranica, 19 (3), 569–573. doi: https://doi.org/10.1016/j.scient.2011.12.014
  15. Villamarin-Barriga, E., Canacuán, J., Londoño-Larrea, P., Solís, H., De La Rosa, A., Saldarriaga, J. F., Montero, C. (2020). Catalytic Cracking of Heavy Crude Oil over Iron-Based Catalyst Obtained from Galvanic Industry Wastes. Catalysts, 10 (7), 736. doi: https://doi.org/10.3390/catal10070736
  16. Kurochkin, A. K. (2015). Povyshaem rentabel'nost' mini-NPZ: komplektuem modulem glubokoy pererabotki mazuta. Sfera. Neft' i gaz, 1 (45), 60–66. Available at: https://ru.calameo.com/read/0054049039c1e13a40c81
  17. Isakov, A. A., Torosyan, G. O. (2017). Technology for producing liquid fuels through processing carbon-containing wastes and fuel oil. Himicheskaya bezopasnost', 1 (2), 221–226. doi: http://doi.org/10.25514/CHS.2017.2.10996
  18. Leonenko, S., Kudryavtsev, S., Glikina, I. (2017). Study of catalytic cracking process of fuel oil to obtain components of motor fuels using aerosol nanocatalysis technology. Adsorption Science & Technology, 35 (9-10), 878–883. doi: https://doi.org/10.1177/0263617417722253
  19. Glikina, I., Glikin, M., Kudryavtsev, S. (2017). Study of kinetic parameters for the catalytic cracking process in Y type aerosol catalyst. Eastern-European Journal of Enterprise Technologies, 3 (6 (87)), 4–8. doi: https://doi.org/10.15587/1729-4061.2017.99022
  20. Ustanovki i pechi termokrekinga, visbrekinga mazuta. Ustanovka termicheskogo krekinga mazuta TKM-700-2E. Available at: http://nouprom-npz.ru/katalog-produktsii/ustanovki-visbrekinga-mazuta/

Downloads

Published

2021-02-10

How to Cite

Leonenko, S., Kudryavtsev, S., Glikina, I., Tarasov, V., & Zolotarova, O. (2021). Revealing the effect of catalyst concentration on the process of fuel oil refining using the technology of aerosol nano catalysis. Eastern-European Journal of Enterprise Technologies, 1(6 (109), 64–71. https://doi.org/10.15587/1729-4061.2021.224228

Issue

Section

Technology organic and inorganic substances