Devising a procedure for justifying the choice of reconnaissance-firing systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.224324

Keywords:

reconnaissance-firing systems, military (combat) activities, hierarchy analysis method

Abstract

This paper reports a study into the special features of military (combat) activities at the present stage of military art development. The purpose was to subsequently define the basic requirements for reconnaissance-firing systems. The features under consideration are a rapid change in the situation, competition with an enemy for winning in time, accuracy, maneuverability, secrecy. They also involve a large amount of data that must be operated when deciding on combat use (hostilities). Other attributes of modern military (combat) activities are the consistency of operations and a clear structure of subordination; independence in maintenance and positioning. These data are useful and important because they make it possible to reasonably define the requirements for reconnaissance-firing systems.

This paper has defined those requirements for reconnaissance-firing systems and such criteria for their selection that are predetermined by the specificity of military (combat) activities. The most important selection criteria include efficiency, accuracy, secrecy, robustness.

Several actual reconnaissance-firing systems have been analyzed in order to demonstrate the use of the methodology. Specifically, «Kropyva» (Ukraine), «ArtOS» (Ukraine), «Obolon-A» (Ukraine), «Sokil» (Poland, Ukraine).

A procedure for justifying the choice of reconnaissance-firing systems has been devised, taking into consideration the conditions of military (combat) activities, based on the method involving an analytic hierarchy process. A given procedure substantiates those selection criteria that were determined on the basis of patterns in modern military activities.

From a practical point of view, the proposed methodology makes it possible to significantly reduce the time for planning an operation and considerably improve the validity of decisions by a commander (chief) regarding the choice of a reconnaissance-firing system and its further use in combat activities.

Author Biographies

Oleksandr Maistrenko, The National Defence University of Ukraine named after Ivan Chernyakhovskyi

Doctor of Military Sciences, Leading Researcher

Scientific and Methodical Center of Organization of Scientific and Scientific and Technical Activity

Vitalii Khoma, The National Defence University of Ukraine named after Ivan ChernyakhovskyiPovitroflotskyi ave., 28, Kyiv, Ukraine, 03049

PhD, Associate Professor, Head of Center

Scientific-Methodical Center for Organizing Science and Scientific-Technical Activity

Oleksandr Karavanov, Hetman Petro Sahaidachnyi National Army AcademyHeroiv Maidanu

Adjunct

Scientific and Organizational Department

Stanislav Stetsiv, Hetman Petro Sahaidachnyi National Army Academy

PhD, Senior Lecturer

Department of Missile Forces

Andrii Shcherba, Hetman Petro Sahaidachnyi National Army Academy

PhD, Senior Lecturer

Department of Complexes and Devices of Artillery Recconaissance

References

  1. Lingamfelter, L. (2020). Desert Redleg: Artillery Warfare in the First Gulf War. Lexington: University Press of Kentucky. doi: http://doi.org/10.2307/j.ctvx0786x

    Harris, C., Kagan, F. (2018). Russia’s military posture: ground forces order of battle. Institute for the Study of War, 9–11. Available at: https://www.jstor.org/stable/resrep17469

    Czuperski, M., Herbst, J., Higgins, E., Polyakova, A., Wilson, D. (2015). Hiding in plain sight: Putinʹs War in Ukraine. Atlantic Council, 40. Available at: https://www.jstor.org/stable/resrep03631 Last accessed: 29.10.2020

    Maistrenko, O., Bubenshсhykov, R., Bondar, R., Poplinskyi, O. (2018). Determination of constituents of fire defeat of opponent by the method of construction "tree of aims". Modern Information Technologies in the Sphere of Security and Defence, 32 (2), 45–50. doi: http://doi.org/10.33099/2311-7249/2018-32-2-45-50

    Maistrenko, O. V. (2017). Further development of the principle of massing missile troops and artillery, their shock and fire in key areas. Collection of the scientific papers of the Centre for Military and Strategic Studies of the National Defence University, 1 (59), 111–115. doi: http://doi.org/10.33099/2304-2745/2017-1-59/111-115

    Lyall, J. (2009). Does Indiscriminate Violence Incite Insurgent Attacks?: Evidence from Chechnya. Journal of Conflict Resolution, 53 (3), 331–362. doi: http://doi.org/10.1177/0022002708330881

    Zimmerman, E., Postrybailo, V., Mastriano, D. (2017). PROJECT 1721: A U.S. Army War College Assessment on Russian Strategy in Eastern Europe and Recommendations on how to Leverage Landpower to Maintain the Peace. Strategic Studies Institute, US Army War College, 17–28. Available at: http://www.jstor.org/stable/resrep11947.11 Last accessed: 29.10.2020

    Grau, L. W., Bartles, C. K. (2018). The Russian Reconnaissance Fire Complex Comes of Age. Oxford: Changing Character of War Centre, Pembroke College. Available at: http://www.ccw.ox.ac.uk/blog/2018/5/30/the-russian-reconnaissance-fire-complex-comes-of-age

    MacDonald, N., Howell, G. (2019). Killing Me Softly: Competition in Artificial Intelligence and Unmanned Aerial Vehicles. PRISM, 8 (3), 102–127. Available at: http://www.jstor.org/stable/26864279

    Ischenko, D. A., Fedorchuk, D. L. (2016). Model of the generalized consumer of information of unmanned aviation complexes. Problems of construction, testing, application and operation of complex information systems, 13, 136–146. Available at: http://nbuv.gov.ua/UJRN/Psvz_2016_13_16

    Danyk, Yu., Shestakov, V. (2017). Development features and improved classification of situational surveillance and attack systems. Modern Information Technologies in the Sphere of Security and Defence, 3 (30), 126–136.

    Shuliakov, S., Dorofieiev, M. (2019). Ways to improve reconnaissance in the interests of missile forces and artillery. Social Development and Security, 9 (5), 15–27. doi: http://doi.org/10.33445/sds.2019.9.5.2

    Zagorka, А. N., Kolesnikov, I. O., Koval, V. V., Zagorka, I. A. (2012). To the question of application of reconnaissance-shock and reconnaissance-fire complexes in net centric war. Science and Technology of the Air Force of Ukraine, 3 (9), 8–13. Available at: http://www.hups.mil.gov.ua/periodic-app/article/333

    Karavanov, O. (2019). Analiz pidkhodiv shchodo doslidzhennia rozviduvalno-vohnevykh system. InterConf, 3. Available at: http://ojs.ukrlogos.in.ua/index.php/interconf/article/view/1078

    Jain, A. K., Murty, M. N., Flynn, P. J. (1999). Data clustering: a review. ACM Computing Surveys, 31 (3), 264–323. doi: http://doi.org/10.1145/331499.331504

    Saaty, T. L. (2008). Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process. RACSAM – Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 102, 251–318. doi: http://doi.org/10.1007/BF03191825

    Saaty, T. L. (2013). On the Measurement of Intangibles. A Principal Eigenvector Approach to Relative Measurement Derived from Paired Comparisons. Notices of the American Mathematical Society, 60 (2), 192–208. doi: http://doi.org/10.1090/noti944

    Litvak, B. G. (2004). Ekspertnye tekhnologii v upravlenii. Moscow: Izdatelstvo Delo, 400. Available at: https://altairbook.com/books/1658080-ekspertnye-tehnologii-v-upravlenii.html

    Nesterenko, O., Netesin, I., Polischuk, V., Trofymchuk, O. (2020). Development of a procedure for expert estimation of capabilities in defense planning under multicriterial conditions. Eastern-European Journal of Enterprise Technologies, 4 (2 (106)), 33–43. doi: http://doi.org/10.15587/1729-4061.2020.208603

    Velychko, O., Hrabovskyi, O., Gordiyenko, T. (2019). Quality assessment of measurement instrument software with analytic hierarchy process. Eastern-European Journal of Enterprise Technologies, 4 (9 (100)), 35–42. doi: http://doi.org/10.15587/1729-4061.2019.175811

    Zahorka, A., Shchypanskyi, P., Pavlikovskyi, A., Koretskyi, A., Bychenkov, V. (2019). Devising methodological provisions for the comparative evaluation of variants for an armament sample in terms of military-technical level. Eastern-European Journal of Enterprise Technologies, 4 (3 (100)), 63–72. doi: http://doi.org/10.15587/1729-4061.2019.176411

    Honcharenko, I., Anishchenko, L., Pisnia, L. (2020). Expert-analytical estimation of environmental safety of solid household waste handling processes. Eastern-European Journal of Enterprise Technologies, 1 (10 (103)), 63–76. doi: http://doi.org/10.15587/1729-4061.2020.197007

    Kadenko, S. V., Tsyganok, V. V. (2017). Defining the relative expert competence during aggregation of pair-wise comparisons. Data Recording, Storage & Processing, 19 (2), 69–83. doi: http://doi.org/10.35681/1560-9189.2017.19.2.126533

    Feickert, A. (2005). U.S. military operations in the global war on terrorism: Afghanistan, Africa, the Philippines, and Colombia. Dspace. Available at: http://afghandata.org:8080/xmlui/handle/azu/4110

    Macedonia, M. (2018) The Future Character of Warfare and Required Capabilities. Army Science Board Final Report, Army Science Board Arlington United States. Available at: https://apps.dtic.mil/dtic/tr/fulltext/u2/1063617.pdf

    Prozapas, I. (2018) Systema upravlinnia vohnem ISTAR: dosvid viiny nachalnyka artylerii polku Azov. Available at: https://censor.net/ru/resonance/3046748/sistema_upravlnnya_vognem_istar_dosvd_vyini_nachalnika_artiler_polku_azov

    Nichol, J. (2008). Russia-Georgia Conflict in South Ossetia: Context and Implications for U. S. Interests. No. ADA490073. Defense technical information center. Virgini: Fort Belvoir. Available at: https://apps.dtic.mil/dtic/tr/fulltext/u2/a490073.pdf

    Nichol, J. (2009) Russia-Georgia Conflict in August 2008: Context and Implications for U.S. Interests. No. ADA496306. Defense technical information center, Virgini: Fort Belvoir. Available at: https://apps.dtic.mil/dtic/tr/fulltext/u2/a496306.pdf

    Syrskyi, O. (2020) Pro plany zastosuvannia avtomatyzovanykh system upravlinnia viiskamy. Available at: https://old.defence-ua.com/index.php/statti/publikatsiji-partneriv/9604-oleksandr-syrskyy-pro-plany-zastosuvannya-avtomatyzovanykh-system-upravlinnya-viyskamy

    Sherstiuk, Ya. (2020). ArtOS pryznachennia, funktsii. Available at: https://artos.tech/uk/

    Rozpochato derzhvyprobuvannia avtomatyzovanoi systemy upravlinnia artyleriieiu «Obolon-A» (2019). Available at: https://www.ukrmilitary.com/2019/05/obolon-a.html

    Majstrenko, O. V., Prokopenko, V. V., Makeev, V. I., Ivanyk, E. G. (2020). Analytical methods of calculation of powered and passive trajectory of reactive and rocket-assisted projectiles. Radio Electronics, Computer Science, Control, 2, 173–182. doi: http://doi.org/10.15588/1607-3274-2020-2-18

    Ukrainsko-polskyi Sokil vykhodyt na poliuvannia (2017). Sait Defence express. Available at: https://old.defence-ua.com/index.php/statti/3411-ukrayinsko-polskyy-sokil-vykhodyt-na-polyuvannya

    Khudov, H., Glukhov, S., Maistrenko, O., Fedorov, A., Andriienko, A., Koplik, O. (2020). The Method of ADS-B Receiver Systems Synchronization using MLAT Technologies in the Course of Radar Control of Air Environment. International Journal of Emerging Trends in Engineering Research, 8 (5), 2002–2008. doi: http://doi.org/10.30534/ijeter/2020/87852020

Downloads

Published

2021-02-28

How to Cite

Maistrenko, O., Khoma, V., Karavanov, O., Stetsiv, S., & Shcherba, A. (2021). Devising a procedure for justifying the choice of reconnaissance-firing systems. Eastern-European Journal of Enterprise Technologies, 1(3 (109), 60–71. https://doi.org/10.15587/1729-4061.2021.224324

Issue

Section

Control processes