Performance of perovskite solar cell coated with graphene oxide as hole transport layer

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.225420

Keywords:

perovskite solar cells, hole transport layer, graphene oxide, thickness, performance

Abstract

Organic metal halide perovskite has recently shown great potential for applications, as it has the advantages of low cost, excellent photoelectric properties, and high power conversion efficiency. The Hole Transport Material (HTM) is one of the most critical components in Perovskite Solar Cells (PSC). It has the function of optimizing the interface, adjusting the energy compatibility, and obtaining higher PCE. The inorganic p-type semiconductor is an alternative HTM due to its chemical stability, higher mobility, increased transparency in the visible region, and general valence band energy level (VB). Here we report the use of the Graphene Oxide (GO) layer as a Hole Transport Layer (HTL) to improve the perovskite solar cells' performance. The crystal structure and thickness of GO significantly affect the increase in solar cell efficiency. This perovskite film must show a high degree of crystallinity. The configuration of the perovskite material is FTO/NiO/GO/CH3NH3PbI3/ZnO/Ag. GO as a Hole Transport Layer can increase positively charged electrons' mobility to improve current and voltage. As a blocking layer that can prevent recombination. The GO can make the perovskite interface layer with smoother holes, and molecular uniformity occurs to reduce recombination. The method used in this study is by using spin coating. In the spin-coating process, the GO layer is coated on top of NiO with variations in the rotation of 700 rpm, 800 rpm, 900 rpm, 1,000 rpm, and 1,500 rpm. The procedure formed different thicknesses from 332.5 nm, 314.7 nm, 256.4 nm, 227.4 to 204.5 nm. The results obtained at a thickness of 227.4 nm reached the optimum efficiency, namely 15,3 %. Thus, the GO material as a Hole Transport Layer can support solar cell performance improvement by not being too thick and thin

Author Biographies

Rustan Hatib, Brawijaya University

Doctoral Student in Mechanical Engineering

Department of Mechanical Engineering

Sudjito Soeparman, Brawijaya University

Professor in Mechanical Engineering

Department of Mechanical Engineering

Denny Widhiyanuriyawan, Brawijaya University

Doctorate in Mechanical Engineering

Department of Mechanical Engineering

Nurkholis Hamidi, Brawijaya University

Doctorate in Mechanical Engineering

Department of Mechanical Engineering

References

  1. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131 (17), 6050–6051. doi: https://doi.org/10.1021/ja809598r
  2. Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., Seok, S. I. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348 (6240), 1234–1237. doi: https://doi.org/10.1126/science.aaa9272
  3. Chiang, Y.-F., Jeng, J.-Y., Lee, M.-H., Peng, S.-R., Chen, P., Guo, T.-F. et. al. (2014). High voltage and efficient bilayer heterojunction solar cells based on an organic–inorganic hybrid perovskite absorber with a low-cost flexible substrate. Phys. Chem. Chem. Phys., 16 (13), 6033–6040. doi: https://doi.org/10.1039/c4cp00298a
  4. Yip, H.-L., Jen, A. K.-Y. (2012). Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy & Environmental Science, 5 (3), 5994. doi: https://doi.org/10.1039/c2ee02806a
  5. Vivo, P., Salunke, J., Priimagi, A. (2017). Hole-Transporting Materials for Printable Perovskite Solar Cells. Materials, 10 (9), 1087. doi: https://doi.org/10.3390/ma10091087
  6. Niu, G., Li, W., Li, J., Wang, L. (2016). Progress of interface engineering in perovskite solar cells. Science China Materials, 59 (9), 728–742. doi: https://doi.org/10.1007/s40843-016-5094-6
  7. Shang, Y., Hao, S., Yang, C., Chen, G. (2015). Enhancing Solar Cell Efficiency Using Photon Upconversion Materials. Nanomaterials, 5 (4), 1782–1809. doi: https://doi.org/10.3390/nano5041782
  8. Kim, J. H., Liang, P.-W., Williams, S. T., Cho, N., Chueh, C.-C., Glaz, M. S. et. al. (2014). High-Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer. Advanced Materials, 27 (4), 695–701. doi: https://doi.org/10.1002/adma.201404189
  9. Frost, J. M., Butler, K. T., Brivio, F., Hendon, C. H., van Schilfgaarde, M., Walsh, A. (2014). Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Letters, 14 (5), 2584–2590. doi: https://doi.org/10.1021/nl500390f
  10. Zhang, P.-P., Zhou, Z.-J., Kou, D.-X., Wu, S.-X. (2017). Perovskite Thin Film Solar Cells Based on Inorganic Hole Conducting Materials. International Journal of Photoenergy, 2017, 1–10. doi: https://doi.org/10.1155/2017/6109092
  11. Rajeswari, R., Mrinalini, M., Prasanthkumar, S., Giribabu, L. (2017). Emerging of Inorganic Hole Transporting Materials For Perovskite Solar Cells. The Chemical Record, 17 (7), 681–699. doi: https://doi.org/10.1002/tcr.201600117
  12. Chung, C.-C., Narra, S., Jokar, E., Wu, H.-P., Wei-Guang Diau, E. (2017). Inverted planar solar cells based on perovskite/graphene oxide hybrid composites. Journal of Materials Chemistry A, 5 (27), 13957–13965. doi: https://doi.org/10.1039/c7ta04575a
  13. Zhu, Z., Bai, Y., Zhang, T., Liu, Z., Long, X., Wei, Z. et. al. (2014). High-Performance Hole-Extraction Layer of Sol-Gel-Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells. Angewandte Chemie International Edition, 53 (46), 12571–12575. doi: https://doi.org/10.1002/anie.201405176
  14. Kim, G.-W., Shinde, D. V., Park, T. (2015). Thickness of the hole transport layer in perovskite solar cells: performance versus reproducibility. RSC Advances, 5 (120), 99356–99360. doi: https://doi.org/10.1039/c5ra18648j
  15. Marinova, N., Tress, W., Humphry-Baker, R., Dar, M. I., Bojinov, V., Zakeeruddin, S. M. et. al. (2015). Light Harvesting and Charge Recombination in CH3NH3PbI3 Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation. ACS Nano, 9 (4), 4200–4209. doi: https://doi.org/10.1021/acsnano.5b00447
  16. Manders, J. R., Tsang, S.-W., Hartel, M. J., Lai, T.-H., Chen, S., Amb, C. M. et. al. (2013). Solution-Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells. Advanced Functional Materials, 23 (23), 2993–3001. doi: https://doi.org/10.1002/adfm.201202269
  17. Dai, B., Fu, L., Liao, L., Liu, N., Yan, K., Chen, Y., Liu, Z. (2011). High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Research, 4 (5), 434–439. doi: https://doi.org/10.1007/s12274-011-0099-8
  18. Wang, Y., Hu, Y., Han, D., Yuan, Q., Cao, T., Chen, N. et. al. (2019). Ammonia-treated graphene oxide and PEDOT:PSS as hole transport layer for high-performance perovskite solar cells with enhanced stability. Organic Electronics, 70, 63–70. doi: https://doi.org/10.1016/j.orgel.2019.03.048
  19. Schniepp, H. C., Li, J.-L., McAllister, M. J., Sai, H., Herrera-Alonso, M., Adamson, D. H. et. al. (2006). Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. The Journal of Physical Chemistry B, 110 (17), 8535–8539. doi: https://doi.org/10.1021/jp060936f
  20. McAllister, M. J., Li, J.-L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J. et. al. (2007). Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chemistry of Materials, 19 (18), 4396–4404. doi: https://doi.org/10.1021/cm0630800
  21. Liu, D., Kelly, T. L. (2013). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 8 (2), 133–138. doi: https://doi.org/10.1038/nphoton.2013.342
  22. Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A. et. al. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2 (1). doi: https://doi.org/10.1038/srep00591
  23. Tseng, Z.-L., Chiang, C.-H., Chang, S.-H., Wu, C.-G. (2016). Surface engineering of ZnO electron transporting layer via Al doping for high efficiency planar perovskite solar cells. Nano Energy, 28, 311–318. doi: https://doi.org/10.1016/j.nanoen.2016.08.035
  24. Das, R., Hamid, S., Ali, M., Ramakrishna, S., Yongzhi, W. (2014). Carbon Nanotubes Characterization by X-ray Powder Diffraction – A Review. Current Nanoscience, 11 (1), 23–35. doi: https://doi.org/10.2174/1573413710666140818210043
  25. Dobiášová, L., Starý, V., Glogar, P., Valvoda, V. (1999). Analysis of carbon fibers and carbon composites by asymmetric X-ray diffraction technique. Carbon, 37 (3), 421–425. doi: https://doi.org/10.1016/s0008-6223(98)00207-3

Downloads

Published

2021-02-26

How to Cite

Hatib, R. ., Soeparman, S. ., Widhiyanuriyawan, D., & Hamidi, N. . (2021). Performance of perovskite solar cell coated with graphene oxide as hole transport layer. Eastern-European Journal of Enterprise Technologies, 1(12 (109), 36–43. https://doi.org/10.15587/1729-4061.2021.225420

Issue

Section

Materials Science