Designing a computerized information processing system to build a movement trajectory of an unmanned aircraft vehicle

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.225501

Keywords:

computerized system, information processing, motion trajectory, neural network

Abstract

This paper addresses the issue of developing a computerized system for processing information in the construction of the trajectory of an unmanned aircraft vehicle (UAV), a remotely-piloted aviation system (RPAS), or another robotic system. Resolving this task involves the neural network learning algorithms based on the mathematical model of movement.
The construction of such a trajectory between two specified destinations has been considered that provides for the possibility of bypassing static and dynamic obstacles. The specified trajectory is divided into several smaller parts. The possibility of restructuring when changing the position of obstacles in space has been considered. A UAV flight control algorithm has been developed, which implies training a neural network for bypassing obstacles of different sizes.
To predict the development of the situation when an object moves between two specified points in space, it is proposed to use the Q-Learning algorithm. It has been shown that the smallest number of steps required for moving along a specified trajectory is 18, the largest is 273 steps. In case of distortion during data transmission, the training of the neural network makes it possible to reduce the possibility of collision with obstacles by improving the accuracy and speed of information transfer between the on-board computer and operator. A system of the video support to moving objects was modeled; dependence charts of the normalized frame size at different parameter values were built. Using the charts makes it possible to determine the function of the maneuver intensity. Existing neural network learning methods such as CNN and LSTM were compared. It has been proven that the success rate reaches 74 % when using CNN only, while it amounts to 92 % at the hybrid application of CNN+LSTM. The simulation results have demonstrated the high efficiency of the developed algorithm

Author Biographies

Volodymyr Kvasnikov, National Aviation University

Doctor of Technical Sciences, Professor, Head of Department

Department of Computerized Electrotechnical Systems and Technologies

Dmytro Ornatskyi, National Aviation University

Doctor of Technical Sciences, Professor

Department of Computerized Electrotechnical Systems and Technologies

Maryna Graf, Zhytomyr Polytechnic State University

Senior Lecturer

Department of Computer Science

Oleksii Shelukha, National Aviation University

Assistant

Department of Computerized Electrotechnical Systems and Technologies

References

  1. Lebedev, H. N., Mirzoian, L. A. (2005). Neiromerezheve planuvannia diy po oblotu nazemnykh obiektiv hrupoiu litalnykh aparativ. Aviakosmisne pryladobuduvannia, 12, 41–47.
  2. Yakovlev, K. S., Baskin, E. S. (2013). Graph models for solving 2D path finding problems. Iskusstvennyi intellekt i prinyatie reshenii = Artificial intelligence and decision making, 1, 5–12.
  3. De, L., Guglieri, G. (2012). Advanced Graph Search Algorithms for Path Planning of Flight Vehicles. Recent Advances in Aircraft Technology. doi: https://doi.org/10.5772/37033
  4. LaValle, S. M. (2011). Motion Planning. IEEE Robotics & Automation Magazine, 18 (1), 79–89. doi: https://doi.org/10.1109/mra.2011.940276
  5. Lee, D., Shim, D. H. (2014). RRT-based path planning for fixed-wing UAVs with arrival time and approach direction constraints. 2014 International Conference on Unmanned Aircraft Systems (ICUAS). doi: https://doi.org/10.1109/icuas.2014.6842270
  6. Gonsales, R., Vuds, R. (2012). Tsifrovaya obrabotka izobrazheniy. Moscow: Tekhnosfera, 1104.
  7. Alpatov, B. A., Babayan, P. V., Balashov, O. E., Stepashkin, A. I. (2008). Metody avtomaticheskogo obnaruzheniya i soprovozhdeniya obektov. Obrabotka izobrazheniy i upravlenie. Moscow: Radiotekhnika, 176.
  8. Lakota, N. A. (Ed.) (1978). Osnovy proektirovaniya sledyashchih sistem. Moscow: Mashinostroenie, 392.
  9. Malyshev, V. V., Krasil'shchikov, M. N., Karlov, V. I. (1989). Optimizatsiya nablyudeniya i upravleniya letatel'nyh apparatov. Moscow: Mashinostroenie, 312.
  10. Kuz'min, S. Z. (2000). Tsifrovaya radiolokatsiya. Vvedenie v teoriyu. Kyiv: KVITS, 428.
  11. Besekerskiy, V. A., Popov, E. P. (2003). Teoriya avtomaticheskogo upravleniya. Sankt-Peterburg: Professiya, 752.
  12. Seydzh, E. P., Melsa, Dzh. L. (1974). Identifikatsiya sistem upravleniya. Moscow: Nauka, 248.
  13. Taha, H. A. (2005). Vvedenie v issledovanie operatsiy. Moscow: Vil'yams, 912.
  14. Dorf, R., Bishop, R. (2002). Sovremennye sistemy upravleniya. Moscow: Laboratoriya Bazovyh Znaniy, 832.
  15. Graf, M., Kvasnikov, V. (2018). The Construction of the Algorithm Study Based on the Mathematical Model of Motion. ICTERI 2018, 235–242. Available at: http://ceur-ws.org/Vol-2105/10000235.pdf
  16. Hraf, M. S., Ihnatenko, P. L. (2017). Analiz suchasnykh modelei obrobky informatsii ta keruvannia v bezpilotnomu povitrianomu sudni. VII Mizhnarodna naukovo-tekhnichna konferentsiya “Kompleksne zabezpechennia yakosti tekhnolohichnykh protsesiv ta system”. Vol. 2. Chernihiv: ChNTU, 135–136. Available at: https://docplayer.net/70618517-Kompleksne-zabezpechennya-yakosti-tehnologichnih-procesiv-ta-sistem.html
  17. Gordin, A. G., Bychkova, I. V., Kulik, A. S., Narozhniy, V. V. (2006). Problematika razrabotki perspektivnyh malogabaritnyh letayushchih robotov. Aerogidrodinamika: problemy i perspektivy, 2, 247–271.
  18. Noth, A., Bouabdallah, S., Siegwart, R. (2006). Dynamic Modeling of Fixed-Wing UAVs. Swiss Federal institute of technology. Available at: http://www.sky-sailor.ethz.ch/docs/Dynamic_Modeling_of_Fixed-Wing_UAVs_(12.05.2006).pdf
  19. Gordin, A. G. (2000). Bespilotnye letatel'nye apparaty kak obekty upravleniya. Kharkiv: Gos. aerokosm. un-t «Khark. aviats. in-t», 140.
  20. Hraf, M. S. (2016). Analiz isnuiuchykh metodiv obrobky informatsiyi v blotsi keruvannia bezpilotnoho povitrianoho sudna. Bulletin of Engineering Academy of Ukraine, 4, 20–22.
  21. Terekhov, V., Efimov, D., Tyukin, I. (2002). Neyrosetevye sistemy upravleniya. Moscow: Vysshaya shkola.
  22. Haykin, S. (2008). Neural Networks: A Comprehensive Foundation. Moscow: Izdatel'skiy dom Vil'yams, 1104.
  23. Goldberg, D. E. (1995). Algorytmy genetyczne i ich zastosowania. Warszawa: WNT.
  24. Burdakov, S. F., D'yachenko, V. A., Timofeev, A. N. (1986). Proektirovanie manipulyatorov promyshlennyh robotov i robotizirovannyh kompleksov. Moscow: Vysshaya shkola, 264.
  25. Pettré, J. (2013). Locomotion Synthesis for Digital Actors. Modeling, Simulation and Optimization of Bipedal Walking, 187–198. doi: https://doi.org/10.1007/978-3-642-36368-9_15
  26. Vukobratovich, M., Shneyder, A. Yu., Gurfinkel', V. S. (1976). SHagayushchie roboty i antropomorfnye mekhanizmy. Moscow: Mir, 541.
  27. Tertychniy-Dauri, V. Yu. (2012). Dinamika robototekhnicheskih sistem. Sankt-Peterburg: NIU ITMO, 128.
  28. Lynen, S., Sattler, T., Bosse, M., Hesch, J., Pollefeys, M., Siegwart, R. (2015). Get Out of My Lab: Large-scale, Real-Time Visual-Inertial Localization. Robotics: Science and Systems XI. doi: https://doi.org/10.15607/rss.2015.xi.037
  29. Barto, A. G. (1997). Reinforcement Learning. Neural Systems for Control, 7–30. doi: https://doi.org/10.1016/b978-012526430-3/50003-9
  30. Sichkar, V. N. (2019). Reinforcement Learning Algorithms in Global Path Planning for Mobile Robot. 2019 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). doi: https://doi.org/10.1109/icieam.2019.8742915
  31. Torabi, F., Warnell, G., Stone, P. (2018). Behavioral Cloning from Observation. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. doi: https://doi.org/10.24963/ijcai.2018/687
  32. Graf, M. S., Kvasnikov, V. P. (2019). Information processing in the control system of an unmanned aerial vehicle. System Research and Information Technologies, 4, 59–65. doi: https://doi.org/10.20535/srit.2308-8893.2019.4.06
  33. Carrio, A., Sampedro, C., Rodriguez-Ramos, A., Campoy, P. (2017). A Review of Deep Learning Methods and Applications for Unmanned Aerial Vehicles. Journal of Sensors, 2017, 1–13. doi: https://doi.org/10.1155/2017/3296874
  34. Gandhi, D., Pinto, L., Gupta, A. (2017). Learning to fly by crashing. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). doi: https://doi.org/10.1109/iros.2017.8206247

Downloads

Published

2021-02-27

How to Cite

Kvasnikov, V., Ornatskyi, D., Graf, M., & Shelukha, O. (2021). Designing a computerized information processing system to build a movement trajectory of an unmanned aircraft vehicle. Eastern-European Journal of Enterprise Technologies, 1(9 (109), 33–42. https://doi.org/10.15587/1729-4061.2021.225501

Issue

Section

Information and controlling system