Devising a procedure for assessing the subgrade compaction degree based on the propagation rate of elastic waves

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.225520

Keywords:

subgrade, impact's elastic wave, inertial study, wave propagation rate, density

Abstract

This paper reports the analysis of the methods for estimating the technical condition of the subgrade underneath a constructed railroad track or road during its operation. The study results have proven that the issue related to monitoring and controlling high-quality compaction of a heterogeneous subgrade remains relevant and requires the construction of reliable experimental methods for assessing the subgrade degree of compaction.

A procedure for determining the compaction of subgrade in the laboratory has been devised, based on inertial microcomputer technologies, which makes it possible to assess the degree of compaction of subgrade soils depending on the propagation rate of an impact's elastic waves.

An experimental study has been performed into the propagation rate of elastic waves across a homogeneous subgrade made of coarse-grained sand and a heterogeneous subgrade made of coarse sand with a layer of clay in the middle of the prism. The study results established that the propagation rate of an elastic wave in a heterogeneous subgrade accepts a lower value than the rate of wave propagation in a homogeneous subgrade.

Through the dynamic interpretation, by using a discriminant statistical analysis, the characteristic features have been defined in the distribution of accelerations in the body of the homogeneous and heterogeneous subgrade, depending on the degree of compaction, which would make it possible to monitor the state of the subgrade during operation. As the degree of the subgrade soil compaction affects the technical condition of roads

Author Biographies

Vitalii Kovalchuk, National Transport University

Doctor of Technical Sciences, Аssociate professor

Department of Bridges and Tunnels

Ivan Kravets, Dnipro National University of Railway Transport named after academician V. Lazaryan

Postgraduate Student

Department of Bridges and Tunnels

Olga Nabochenko, Lviv Branch of Dnipro National University of Railway Transport named after Academician V. Lazaryan

PhD, Associate Professor

Department of "The rolling stock and track"

Arthur Onyshchenko, National Transport University

Doctor of Technical Sciences, Associate Professor

Department of Bridges and Tunnels

Olexander Fedorenko, Kyivavtodor Municipal Corporation

Acting General Director, Deputy General Director for Production Development

Andriy Pentsak, Lviv Polytechnic National University

PhD, Associate Professor

Department of Construction Industry

Oleksiy Petrenko, National University Lviv Polytechnic

PhD, Associate Professor

Department of Construction industry

Nataliya Hembara, Ukrainian Academy of printing

PhD

Department of Engineering

References

  1. Hu, M., O’Sullivan, C., Jardine, R. R., Jiang, M. (2010). Stress-induced anisotropy in sand under cyclic loading. Granular Matter, 12 (5), 469–476. doi: http://doi.org/10.1007/s10035-010-0206-7
  2. Wichtmann, T., Niemunis, A., Triantafyllidis, T. (2010). Strain accumulation in sand due to drained cyclic loading: on the effect of monotonic and cyclic preloading (Miner's rule). Soil Dynamics and Earthquake Engineering, 30 (8), 736–745. doi: http://doi.org/10.1016/j.soildyn.2010.03.004
  3. Derzhavni budivelni normy Ukrainy. Sporudy transportu. Zaliznytsi kolii 1520 mm. Normy proektuvannia. DBN.2.3-19:2018 (2018). Kyiv: Minrehionbud, 126. Available at: http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=80894
  4. DSTU B V.2.1-12:2009 Hrunty. Metod laboratornoho vyznachennia maksymalnoi shchilnosti (2010). Kyiv: Minrehionbud Ukrainy, 9. Available at: http://profidom.com.ua/v-2/v-2-1/1423-dstu-b-v-2-1-122009-metod-laboratornogo-viznachenna-maksimalnoji-shhilnosti
  5. DIN 18127:2012. Baugrund, Untersuchung von Bodenproben. Proctorversuch (2012). Berlin: Deutsches Institut für Normung, 32. doi: http://doi.org/10.31030/1906160
  6. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)) (2007). ASTM Standard D698. ASTM International. West Conshohocken. doi: http://doi.org/10.1520/d0698-07e01
  7. Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)) (2009). ASTM Standard D1557. ASTM International. West Conshohocken. doi: http://doi.org/10.1520/d1557-09
  8. Aleksandrova, N. P., Semenova, T. V., Dolgikh, G. V. (2015). Metody opredeleniia maksimalnoi plotnosti gruntov zemlianogo polotna avtomobilnykh dorog. Omsk: SibADI, 59. Available at: https://www.elibrary.ru/item.asp?id=24902159
  9. Panasiuk, Y. I., Boyarchuk, B. А., Talakh, L. O., Protsiuk, V. O. (2020). Determination of maximum soil density. Modern technologies and methods of calculations in construction, 13, 64–70. doi: http://doi.org/10.36910/6775-2410-6208-2020-3(13)-08
  10. Sait proiektu «Velyke budivnytstvo». Available at: https://bigbud.kmu.gov.ua/
  11. Luchko, J., Kovalchuk, V., Kravets, I., Gajda, O., Onyshchenko, A. (2020). Determining patterns in the stressed­deformed state of the railroad track subgrade reinforced with tubular drains. Eastern-European Journal of Enterprise Technologies, 5 (7 (107)), 6–13. doi: http://doi.org/10.15587/1729-4061.2020.213525
  12. Pavliuk, D. O., Pavliuk, V. V., Pavliuk, V. V., Shuriakov M. V. (2012). Prystrii dlia avtomatyzovanoho vymiriuvannia faktychnoho ta asymptotychnoho modulia deformatsii gruntiv ta osnov dorozhnikh odiahiv. Avtoshliakhovyk Ukrainy, 1, 33–37. Available at: http://nbuv.gov.ua/UJRN/au_2012_1_11
  13. Izvolt, L., Sestakova, J., Smalo, M. (2016). Analysis of results of monitoring and prediction of quality development of ballasted and ballastless track superstructure and its transition areas. Communications – Scientific Letters of the University of Zilina, 18 (4), 19–29. Available at: https://www.researchgate.net/publication/317756116_Analysis_of_results_of_monitoring_and_prediction_of_quality_development_of_ballasted_and_ballastless_track_superstructure_and_its_transition_areas
  14. Antipov, V., Ofrikhter, V. (2016). Modern nondestructive method of researching of geological-engineering section. PNRPU Construction and Architecture Bulletin, 7 (2), 37–49. doi: http://doi.org/10.15593/2224-9826/2016.2.04
  15. Catalina, O. M. (2003). Inversion method for spectral analysis of surface waves (SASW). Institute of Technology, 287. Available at: https://smartech.gatech.edu/handle/1853/5124
  16. Sussmann, T. R., Thompson, H. B., Stark, T. D., Wilk, S. T., Ho, C. L. (2017). Use of seismic surface wave testing to assess track substructure condition. Construction and Building Materials, 155, 1250–1255. doi: http://doi.org/10.1016/j.conbuildmat.2017.02.077
  17. Suto, K. (2007). Multichannel analysis of surface waves (MASW) for investigation of ground competence: an introduction. Engineering Advances in Earthworks. Australian Geomechanics Society, 71–81.
  18. Park, C. B., Miller, R. D., Xia, J. (1999). Multichannel analysis of surface waves. Geophysics, 64 (3), 800–808. doi: http://doi.org/10.1190/1.1444590
  19. Dashwood, B., Gunn, D., Curioni, G., Inauen, C., Swift, R., Chapman, D. et. al. (2020). Surface wave surveys for imaging ground property changes due to a leaking water pipe. Journal of Applied Geophysics, 174, 103923. doi: http://doi.org/10.1016/j.jappgeo.2019.103923
  20. Przybylowicz, M., Sysyn, M., Kovalchuk, V., Nabochenko, O., Parneta, B. (2020). Experimental and theoretical evaluation of side tamping method for ballasted railway track maintenance. Transport Problems, 15 (3), 93–106. doi: http://doi.org/10.21307/tp-2020-036
  21. Sysyn, M., Nabochenko, O., Kovalchuk, V., Gerber, U. (2019). Evaluation of railway ballast layer consolidation after maintenance works. Acta Polytechnica, 59 (1), 77–87. doi: http://doi.org/10.14311/ap.2019.59.0077
  22. Sysyn, M., Gerber, U., Kovalchuk, V., Nabochenko, O. (2018). The complex phenomenological model for prediction of inhomogeneous deformations of railway ballast layer after tamping works. Archives of Transport, 47 (3), 91–107. doi: http://doi.org/10.5604/01.3001.0012.6512
  23. Sysyn, M., Kovalchuk, V., Nabochenko, O., Kovalchuk, Y., Voznyak, O. (2019). Experimental Study of Railway Trackbed Pressure Distribution Under Dynamic Loading. The Baltic Journal of Road and Bridge Engineering, 14 (4), 504–520. doi: http://doi.org/10.7250/bjrbe.2019-14.455
  24. Sysyn, M., Kovalchuk, V., Gerber, U., Nabochenko, O., Parneta, B. (2019). Laboratory Evaluation of Railway Ballast Consolidation by the Non-Destructive Testing. Communications – Scientific Letters of the University of Zilina, 21 (2), 81–88. doi: http://doi.org/10.26552/com.c.2019.2.81-88
  25. Sysyn, M., Kovalchuk, V., Gerber, U., Nabochenko, O., Pentsak, A. (2020). Experimental study of railway ballast consolidation inhomogeneity under vibration loading. Pollack Periodica, 15 (1), 27–36. doi: http://doi.org/10.1556/606.2020.15.1.3
  26. Liakhovitskii, F. M., Khmelevskoi, V. K., Iaschenko, Z. G. (1989). Inzhenernaia geofizika. Moscow: Nedra, 254.
  27. Donohue, S., Long, M. (2010). Assessment of sample quality in soft clay using shear wave velocity and suction measurements. Géotechnique, 60 (11), 883–889. doi: http://doi.org/10.1680/geot.8.t.007.3741
  28. Gunn, D., Dashwood, B. A. J., Bergamo, P., Donohue, S. (2016). Aged embankment imaging and assessment using surface waves. Proceedings of the Institution of Civil Engineers – Forensic Engineering, 169 (4), 149–165. doi: http://doi.org/10.1680/jfoen.16.00022

Downloads

Published

2021-02-26

How to Cite

Kovalchuk, V. ., Kravets, I., Nabochenko, O., Onyshchenko, A., Fedorenko, O., Pentsak, A. ., Petrenko, O., & Hembara, N. (2021). Devising a procedure for assessing the subgrade compaction degree based on the propagation rate of elastic waves . Eastern-European Journal of Enterprise Technologies, 1(5 (109), 6–15. https://doi.org/10.15587/1729-4061.2021.225520

Issue

Section

Applied physics