Determining the dissipative properties of a flexible pipeline’s material at stretching in the transverse direction taking its structural elements into consideration

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.227039

Keywords:

deformation, pressure fire hose, hysteresis, dissipative properties, experimental determining, reinforced frame, waterproofing rubber layer

Abstract

This paper reports an experimental study that determines the dissipative properties of a pressure fire hose, the type of «T», whose inner diameter is 77 mm, under the static load conditions, taking into consideration the structural elements of the hose in the transverse direction. For this study, experimental samples were separated from the different sections of the hose. The study involved both the outer fabric reinforced frame and the internal waterproofing rubber layer of the pressure fire hose. A series of field experiments were carried out while stretching the samples under the conditions of static loading-unloading cycles. The tests included 7 cycles, which were carried out in a two-minute interval for the material of the hose. The study results showed that during the first two to three cycles, the materials manifest a short-term creep that stabilizes under modes 4‒7. The results from experimental research were approximated by polynomial trend lines. The deformation of samples demonstrated the curves that, under the conditions of cyclic loading and unloading, formed hysteresis loops. When analyzing the appropriate curves, it was found that, first, during the first two-three loading-unloading cycles the area of the hysteresis loops decreases, second, the inclination angle of hysteresis loops also decreased during each subsequent loading-unloading cycle.

It was established that the dissipation coefficients of the hose material stretched in the transverse direction are significantly reduced under the first three test modes in the range from 0.49 to 0.37. At subsequent tests (cycles 4–7), dissipation coefficients stabilize at the level of 0.18 for the reinforced frame, and 0.316 for the rubber layer

Author Biographies

Sergii Nazarenko, National University of Civil Defence of Ukraine

PhD

Department of Engineering and Rescue Machinery

Roman Kovalenko, National University of Civil Defence of Ukraine

PhD

Department of Engineering and Rescue Machinery

Andrii Gavryliuk, Lviv State University of Life Safety

PhD

Department of Vehicle Operation and Fire-Rescue Techniques

Stanislav Vinogradov, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Engineering and Rescue Machinery

Borys Kryvoshei, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Engineering and Rescue Machinery

Sergey Pavlenko, National Academy of the National Guard of Ukraine

PhD

Department of Technical and Logistics Support

Igor Boikov, National Academy of the National Guard of Ukraine

PhD, Associate Professor

Department of Armoured Vehicles

Volodymyr Muzichuck, National Academy of the National Guard of Ukraine

PhD, Associate Professor

Department of Missile and Artillery Armament

Pavel Kalinin, National Academy of the National Guard of Ukraine

PhD, Associate Professor

Department of Engineering Mechanics

References

  1. Kovalenko, R., Kalynovskyi, A., Nazarenko, S., Kryvoshei, B., Grinchenko, E., Demydov, Z. et. al. (2019). Development of a method of completing emergency rescue units with emergency vehicles. Eastern-European Journal of Enterprise Technologies, 4 (3 (100)), 54–62. doi: https://doi.org/10.15587/1729-4061.2019.175110
  2. Vasiliev, M., Movchan, I., Koval, O. (2014). Diminishing of ecological risk via optimization of fire-extinguishing system projects in timber-yards. Scientific Bulletin of National Mining University, 5, 106–113.
  3. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 11–16. doi: https://doi.org/10.15587/1729-4061.2017.114504
  4. Tiutiunyk, V. V., Ivanets, H. V., Tolkunov, I. A., Stetsyuk, E. I. (2018). System approach for readiness assessment units of civil defense to actions at emergency situations. Scientific Bulletin of National Mining University, 1, 99–105. doi: https://doi.org/10.29202/nvngu/2018-1/7
  5. Lee, G.-C., Kim, H.-E., Park, J.-W., Jin, H.-L., Lee, Y.-S., Kim, J.-H. (2011). An experimental study and finite element analysis for finding leakage path in high pressure hose assembly. International Journal of Precision Engineering and Manufacturing, 12 (3), 537–542. doi: https://doi.org/10.1007/s12541-011-0067-y
  6. Pavloušková, Z., Klakurková, L., Man, O., Čelko, L., Švejcar, J. (2015). Assessment of the cause of cracking of hydraulic hose clamps. Engineering Failure Analysis, 56, 14–19. doi: https://doi.org/10.1016/j.engfailanal.2015.05.014
  7. Yoo, D.-H., Jang, B.-S., Yim, K.-H. (2017). Nonlinear finite element analysis of failure modes and ultimate strength of flexible pipes. Marine Structures, 54, 50–72. doi: https://doi.org/10.1016/j.marstruc.2017.03.007
  8. Haseeb, A. S. M. A., Jun, T. S., Fazal, M. A., Masjuki, H. H. (2011). Degradation of physical properties of different elastomers upon exposure to palm biodiesel. Energy, 36 (3), 1814–1819. doi: https://doi.org/10.1016/j.energy.2010.12.023
  9. Cho, J. R., Yoon, Y. H., Seo, C. W., Kim, Y. G. (2015). Fatigue life assessment of fabric braided composite rubber hose in complicated large deformation cyclic motion. Finite Elements in Analysis and Design, 100, 65–76. doi: https://doi.org/10.1016/j.finel.2015.03.002
  10. Cho, J.-R., Yoon, Y.-H. (2016). Large deformation analysis of anisotropic rubber hose along cyclic path by homogenization and path interpolation methods. Journal of Mechanical Science and Technology, 30 (2), 789–795. doi: https://doi.org/10.1007/s12206-016-0134-5
  11. Traxl, R., Mungenast, D., Schennach, O., Lackner, R. (2019). Mechanical performance of textile-reinforced hoses assessed by a truss-based unit cell model. International Journal of Engineering Science, 141, 47–66. doi: https://doi.org/10.1016/j.ijengsci.2019.05.006
  12. Motorin, L., Stepanov, O., Bratolyubova, E. (2011). The simplified mathematical model for strength calculation of pressure fire hoses under hydraulic influence. Tehnologiya tekstil'noy promyshlennosti, 1, 126–133.
  13. Larin, O. O. (2015). Probabilistic Model of Fatigue Damage Accumulation in Rubberlike Materials. Strength of Materials, 47 (6), 849–858. doi: https://doi.org/10.1007/s11223-015-9722-3
  14. Larin, A. A., Vyazovichenko, Y. A., Barkanov, E., Itskov, M. (2018). Experimental Investigation of Viscoelastic Characteristics of Rubber-Cord Composites Considering the Process of Their Self-Heating. Strength of Materials, 50 (6), 841–851. doi: https://doi.org/10.1007/s11223-019-00030-7
  15. Fedorko, G., Molnar, V., Dovica, M., Toth, T., Fabianova, J. (2015). Failure analysis of irreversible changes in the construction of the damaged rubber hoses. Engineering Failure Analysis, 58, 31–43. doi: https://doi.org/10.1016/j.engfailanal.2015.08.042
  16. Larin, O., Morozov, O., Nazarenko, S., Chernobay, G., Kalynovskyi, A., Kovalenko, R. et. al. (2019). Determining mechanical properties of a pressure fire hose the type of «T». Eastern-European Journal of Enterprise Technologies, 6 (7 (102)), 63–70. doi: https://doi.org/10.15587/1729-4061.2019.184645
  17. Nazarenko, S., Kovalenko, R., Asotskyi, V., Chernobay, G., Kalynovskyi, A., Tsebriuk, I. et. al. (2020). Determining mechanical properties at the shear of the material of “T” type pressure fire hose based on torsion tests. Eastern-European Journal of Enterprise Technologies, 5 (7 (107)), 45–55. doi: https://doi.org/10.15587/1729-4061.2020.212269
  18. Stepanov, O. S., Bratolyubova, E. V., Shirokov, A. A. (2012). Research of influence of different factors on forcing fire-hose strength at hydraulic effect. Tehnologiya tekstil'noy promyshlennosti, 4, 105–108.

Downloads

Published

2021-04-20

How to Cite

Nazarenko, S., Kovalenko, R., Gavryliuk, A., Vinogradov, S., Kryvoshei, B., Pavlenko, S., Boikov, I., Muzichuck, V., & Kalinin, P. (2021). Determining the dissipative properties of a flexible pipeline’s material at stretching in the transverse direction taking its structural elements into consideration . Eastern-European Journal of Enterprise Technologies, 2(1 (110), 12–20. https://doi.org/10.15587/1729-4061.2021.227039

Issue

Section

Engineering technological systems