Determining the parameters for a 3D-printing process using the fused deposition modeling in order to manufacture an article with the required structural parameters

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.227075

Keywords:

3D printing, process parameters, FDM technology, tensile strength, manufacturing precision, PLA, layer thickness

Abstract

The mass application of FDM technology is slowed down due to the difficulty of selecting 3D printing parameters in order to manufacture an article with the required characteristics. This paper reports a study into the impact of 3D printing parameters (temperature, print speed, layer height) on mechanical parameters (strength, elasticity module), as well as on the accuracy of printing and roughness of the surface of a specimen based on thermoplastic (PLA plastic). Several batches of specimens were fabricated for this study in accordance with ASTM D638 and ASTM D695, which were tested for tension, geometric accuracy, and roughness. Based on the experimental data, regression analysis was carried out and the functional dependences of the strength, elasticity module, printing precision, roughness of a surface on 3D printing parameters (temperature, speed, thickness of the layer) were constructed. In addition, the derived mathematical model underlying a method of non-linear programming has established such printing parameters that could provide for the required properties of a structure. The analytical dependences reported in the current work demonstrate a high enough determination factor in the examined range of parameters. Using functional dependences during the design phase makes it possible to assess the feasibility of its manufacture with the required properties, reduce the time to work out the process of printing it, and give recommendations on the technological parameters of 3D printing. The recommendations from this study could be used to make PLA-plastic articles for various purposes with the required properties

Author Biographies

Oleksii Vambol, National Aerospace University "Kharkiv Aviation Institute"

PhD

Department of Composite Structures and Aviation Materials

Andrii Kondratiev, O.M. Beketov National University of Urban Economy in Kharkiv

Doctor of Technical Sciences, Professor

Department of Construction Technology and Building Materials

Svitlana Purhina, National Aerospace University "Kharkiv Aviation Institute"

PhD

Department of Composite Structures and Aviation Materials

Maryna Shevtsova, National Aerospace University "Kharkiv Aviation Institute"

PhD, Associate Professor

Department of Composite Structures and Aviation Materials

References

  1. Stavychenko, V., Purhina, S., Shestakov, P. (2018). Prediction of specific electrical resistivity of polymeric composites based on carbon fabrics. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 46–53. doi: https://doi.org/10.15587/1729-4061.2018.129062
  2. Felton, H., Hughes, R., Diaz-Gaxiola, A. (2021). Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds. PLOS ONE, 16 (2), e0245206. doi: https://doi.org/10.1371/journal.pone.0245206
  3. Bychkov, A. S., Kondratiev, A. V. (2019). Criterion-Based Assessment of Performance Improvement for Aircraft Structural Parts with Thermal Spray Coatings. Journal of Superhard Materials, 41 (1), 53–59. doi: https://doi.org/10.3103/s1063457619010088
  4. Hu, Z., Vambol, O. (2020). Topological designing and analysis of the composite wing rib. Aerospace Technic and Technology, 6, 4–14. doi: https://doi.org/10.32620/aktt.2020.6.01
  5. Mhapsekar, K., McConaha, M., Anand, S. (2018). Additive Manufacturing Constraints in Topology Optimization for Improved Manufacturability. Journal of Manufacturing Science and Engineering, 140 (5). doi: https://doi.org/10.1115/1.4039198
  6. Andreev, A. V., Karpov, Ya. S., Taranenko, I. M., Shevtsova, M. A. (2016). Analiz nekotoryh fundamental'nyh problem sozdaniya konstruktsiy iz kompozitnyh materialov i vozmozhnyh putey ih resheniya. Voprosy proektirovaniya i proizvodstva konstruktsiy letatel'nyh apparatov, 4, 37–49. Available at: http://nbuv.gov.ua/UJRN/Pptvk_2016_4_5
  7. Tymrak, B. M., Kreiger, M., Pearce, J. M. (2014). Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design, 58, 242–246. doi: https://doi.org/10.1016/j.matdes.2014.02.038
  8. Raut, S., Jatti, V. S., Khedkar, N. K., Singh, T. P. (2014). Investigation of the Effect of Built Orientation on Mechanical Properties and Total Cost of FDM Parts. Procedia Materials Science, 6, 1625–1630. doi: https://doi.org/10.1016/j.mspro.2014.07.146
  9. Chacón, J. M., Caminero, M. A., García-Plaza, E., Núñez, P. J. (2017). Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials & Design, 124, 143–157. doi: https://doi.org/10.1016/j.matdes.2017.03.065
  10. Wu, W., Geng, P., Li, G., Zhao, D., Zhang, H., Zhao, J. (2015). Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS. Materials, 8 (9), 5834–5846. doi: https://doi.org/10.3390/ma8095271
  11. Gonabadi, H., Yadav, A., Bull, S. J. (2020). The effect of processing parameters on the mechanical characteristics of PLA produced by a 3D FFF printer. The International Journal of Advanced Manufacturing Technology, 111 (3-4), 695–709. doi: https://doi.org/10.1007/s00170-020-06138-4
  12. Vasilescu, M. D., Groza, I. V. (2017). Influence of technological parameters on the roughness and dimension of flat parts generated by FDM 3D printing. Nonconventional Technologies Review, 21 (3), 18–23. Available at: https://www.researchgate.net/publication/321585763_INFLUENCE_OF_TECHNOLOGICAL_PARAMETERS_ON_THE_ROUGHNESS_AND_DIMENSION_OF_FLAT_PARTS_GENERATED_BY_FDM_3D_PRINTING
  13. Christiyan, K. G. J., Chandrasekhar, U., Venkateswarlu, K. (2016). A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite. IOP Conference Series: Materials Science and Engineering, 114, 012109. doi: https://doi.org/10.1088/1757-899x/114/1/012109
  14. Sukindar, N. A., Ariffin, M. K. A. B. M., Baharudin, B. T. H. T. B., Jaafar, C. N. A. B., Ismail, M. I. S. B. (2017). Analysis on temperature setting for extruding polylactic acid using open-source 3D printer. ARPN Journal of Engineering and Applied Sciences, 12 (4), 1348–1353. Available at: https://www.researchgate.net/publication/316696762_Analysis_on_temperature_setting_for_extruding_polylactic_acid_using_open-source_3D_printer
  15. Rankouhi, B., Javadpour, S., Delfanian, F., Letcher, T. (2016). Failure Analysis and Mechanical Characterization of 3D Printed ABS With Respect to Layer Thickness and Orientation. Journal of Failure Analysis and Prevention, 16 (3), 467–481. doi: https://doi.org/10.1007/s11668-016-0113-2
  16. Alafaghani, A., Qattawi, A., Alrawi, B., Guzman, A. (2017). Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach. Procedia Manufacturing, 10, 791–803. doi: https://doi.org/10.1016/j.promfg.2017.07.079
  17. Tontowi, A. E., Ramdani, L., Erdizon, R. V., Baroroh, D. K. (2017). Optimization of 3D-Printer Process Parameters for Improving Quality of Polylactic Acid Printed Part. International Journal of Engineering and Technology, 9 (2), 589–600. doi: https://doi.org/10.21817/ijet/2017/v9i2/170902044
  18. Ouhsti, M., El Haddadi, B., Belhouideg, S. (2018). Effect of Printing Parameters on the Mechanical Properties of Parts Fabricated with Open-Source 3D Printers in PLA by Fused Deposition Modeling. Mechanics and Mechanical Engineering, 22 (4), 895–908. doi: https://doi.org/10.2478/mme-2018-0070
  19. Hashemi Sanatgar, R., Campagne, C., Nierstrasz, V. (2017). Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters. Applied Surface Science, 403, 551–563. doi: https://doi.org/10.1016/j.apsusc.2017.01.112
  20. Sood, A. K., Ohdar, R. K., Mahapatra, S. S. (2010). Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials & Design, 31 (1), 287–295. doi: https://doi.org/10.1016/j.matdes.2009.06.016
  21. Lanzotti, A., Grasso, M., Staiano, G., Martorelli, M. (2015). The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping Journal, 21 (5), 604–617. doi: https://doi.org/10.1108/rpj-09-2014-0135
  22. Christiyan, K. G. J., Chandrasekhar, U., Venkateswarlu, K. (2019). Investigation on the mechanical properties of PLA & its composite fabricated through advanced fusion plastic modelling. Journal of Mechanical Engineering Research and Developments, 42 (3), 47–54. doi: https://doi.org/10.26480/jmerd.03.2019.47.54
  23. Yang, T.-C. (2018). Effect of Extrusion Temperature on the Physico-Mechanical Properties of Unidirectional Wood Fiber-Reinforced Polylactic Acid Composite (WFRPC) Components Using Fused Deposition Modeling. Polymers, 10 (9), 976. doi: https://doi.org/10.3390/polym10090976
  24. Letcher, T., Rankouhi, B., Javadpour, S. (2015). Experimental Study of Mechanical Properties of Additively Manufactured ABS Plastic as a Function of Layer Parameters. Volume 2A: Advanced Manufacturing. doi: https://doi.org/10.1115/imece2015-52634
  25. Garson, G. D. (2014). Multiple Regression. Statistical Associates Publishers, 462.
  26. Bhatti, M. A. (2000). Practical Optimization Methods. Springer, 715. doi: https://doi.org/10.1007/978-1-4612-0501-2
  27. Cavazzuti, M. (2013). Optimization Methods. From Theory to Design Scientific and Technological Aspects in Mechanics. Springer, 262. doi: https://doi.org/10.1007/978-3-642-31187-1

Downloads

Published

2021-04-20

How to Cite

Vambol, O., Kondratiev, A., Purhina, S., & Shevtsova, M. (2021). Determining the parameters for a 3D-printing process using the fused deposition modeling in order to manufacture an article with the required structural parameters . Eastern-European Journal of Enterprise Technologies, 2(1 (110), 70–80. https://doi.org/10.15587/1729-4061.2021.227075

Issue

Section

Engineering technological systems