Designing a kinematic module with rounding to model the processes of combined radial-longitudinal extrusion involving a tool whose configuration is complex
DOI:
https://doi.org/10.15587/1729-4061.2021.227120Keywords:
simulation of combined extrusion processes, tool configuration, kinematic module, energy methodAbstract
It is advisable that parts whose shape is complex and which are made from solid or hollow blanks should be made by means of transverse and combined radial-longitudinal extrusion. The variation of manufacturing modes, tool configurations (in the form of chambers and rounding of the transitional sections of matrices) requires an adequate preliminary assessment of the force regime and the features of part shape formation. This paper has proposed a curvilinear kinematic module of the trapezoidal form for modeling radial-longitudinal extrusion processes in the presence of matrix rounding. Given the impossibility of using a quarter-circle boundary for the kinematically assigned possible velocity field, it has been proposed to use approximate curves in the form of z1(r) and z2(r). Taking into account the slightest deviation in the length of the arc of the approximate curve z1(r) and the area of the curvilinear trapezoid bounded by it relative to a quarter of the circle (not exceeding 0.8 % for any ratio), it has been recommended using this particular replacement. We have performed calculations of the value of the reduced deformation pressure inside the kinematic module with rounding taking into consideration the power of cutting forces at the border with adjacent kinematic modules. As an example, the devised module with rounding embedded in the estimation scheme of radial extrusion was analyzed. A significant impact of friction conditions on the force mode and the corresponding optimal value of the rounding radius have been identified. The resulting kinematic module makes it possible to expand the capabilities of the energy method for modeling cold extrusion processes involving the tools of complex form according to new deformation schemes. That could contribute to preparing recommendations on the optimal tool configuration and more active industrial implementation of these processes
References
- Bhaduri, A. (2018). Extrusion. Springer Series in Materials Science, 599–646. doi: https://doi.org/10.1007/978-981-10-7209-3_13
- Kukhar, V., Kurpe, O., Klimov, E., Balalayeva, E., Dragobetskii, V. (2018). Improvement of the Method for Calculating the Metal Temperature Loss on a Coilbox Unit at The Rolling on Hot Strip Mills. International Journal of Engineering & Technology, 7 (4.3), 35. doi: https://doi.org/10.14419/ijet.v7i4.3.19548
- Markov, O., Kukhar, V., Zlygoriev, V., Shapoval, A., Khvashchynskyi, A., Zhytnikov, R. (2020). Improvement of upsetting process of four-beam workpieces based on computerized and physical modeling. FME Transactions, 48 (4), 946–953. doi: https://doi.org/10.5937/fme2004946m
- Bohdanova, L. M., Vasilyeva, L. V., Guzenko, D. E., Kolodyazhny, V. M. (2018). A Software System to Solve the Multi-Criteria Optimization Problem with Stochastic Constraints. Cybernetics and Systems Analysis, 54 (6), 1013–1018. doi: https://doi.org/10.1007/s10559-018-0104-2
- Kukhar, V. V., Grushko, A. V., Vishtak, I. V. (2018). Shape Indexes for Dieless Forming of the Elongated Forgings with Sharpened End by Tensile Drawing with Rupture. Solid State Phenomena, 284, 408–415. doi: https://doi.org/10.4028/www.scientific.net/ssp.284.408
- Chigarev, V. V., Belik, A. G., Gribkov, E. P., Gavrish, P. A. (2014). A mathematical model of the process of rolling flux-cored tapes. Welding International, 29 (1), 70–74. doi: https://doi.org/10.1080/09507116.2014.888192
- Perig, A. (2015). Two-parameter Rigid Block Approach to Upper Bound Analysis of Equal Channel Angular Extrusion Through a Segal 2θ-die. Materials Research, 18 (3), 628–638. doi: https://doi.org/10.1590/1516-1439.004215
- Perig, A., Matveyev, I. (2019). FEM-based deformation regression analysis of ECAE strains. FME Transactions, 47 (4), 851–855. doi: https://doi.org/10.5937/fmet1904851p
- Saffar, S., Malaki, M., Mollaei-Dariani, B. (2014). On the effects of eccentricity in precision forging process. UPB Scientific Bulletin, Series D: Mechanical Engineering, 76 (1), 123–138. Available at: https://www.researchgate.net/publication/288478481_On_the_effects_of_eccentricity_in_precision_forging_process
- Aliieva, L., Hrudkina, N., Aliiev, I., Zhbankov, I., Markov, O. (2020). Effect of the tool geometry on the force mode of the combined radial-direct extrusion with compression. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 15–22. doi: https://doi.org/10.15587/1729-4061.2020.198433
- Perig, A. V. (2014). 2D upper bound analysis of ECAE through 2θ-dies for a range of channel angles. Materials Research, 17 (5), 1226–1237. doi: https://doi.org/10.1590/1516-1439.268114
- Kalyuzhnyi, V. L., Alieva, L. I., Kartamyshev, D. A., Savchinskii, I. G. (2017). Simulation of Cold Extrusion of Hollow Parts. Metallurgist, 61 (5-6), 359–365. doi: https://doi.org/10.1007/s11015-017-0501-1
- Lee, Y. S., Hwang, S. K., Chang, Y. S., Hwang, B. B. (2001). The forming characteristics of radial–forward extrusion. Journal of Materials Processing Technology, 113 (1-3), 136–140. doi: https://doi.org/10.1016/s0924-0136(01)00705-1
- Jafarzadeh, H., Zadshakoyan, M., Abdi Sobbouhi, E. (2010). Numerical Studies of Some Important Design Factors in Radial-Forward Extrusion Process. Materials and Manufacturing Processes, 25 (8), 857–863. doi: https://doi.org/10.1080/10426910903536741
- Alieva, L., Zhbankov, Y. (2015). Radial-direct extrusion with a movable mandrel. Metallurgical and Mining Industry, 11, 175–183. Available at: https://www.metaljournal.com.ua/assets/Journal/english-edition/MMI_2015_11/Leila_Alieva.pdf
- Aliev, I. S. (1988). Radial extrusion processes. Soviet Forging and Metal Stamping Technology. English Translation of Kuznechno-Shtampovochnoe Proizvodstvo, 3, 54–61.
- Aliev, I. S., Lobanov, A. I., Borisov, R. S., Savchinskij, I. G. (2004). Investigation of die blocks with split matrixes for the processes of cross extrusion. In: Forging and Stamping Production (Materials Working by Pressure), 8, 21–26.
- Farhoumand, A., Ebrahimi, R. (2009). Analysis of forward–backward-radial extrusion process. Materials & Design, 30 (6), 2152–2157. doi: https://doi.org/10.1016/j.matdes.2008.08.025
- Jafarzadeh, H., Barzegar, S., Babaei, A. (2014). Analysis of Deformation Behavior in Backward–Radial–Forward Extrusion Process. Transactions of the Indian Institute of Metals, 68 (2), 191–199. doi: https://doi.org/10.1007/s12666-014-0441-4
- Farhoumand, A., Ebrahimi, R. (2016). Experimental investigation and numerical simulation of plastic flow behavior during forward-backward-radial extrusion process. Progress in Natural Science: Materials International, 26 (6), 650–656. doi: https://doi.org/10.1016/j.pnsc.2016.12.005
- Ogorodnikov, V. А., Dereven’ko, I. А., Sivak, R. I. (2018). On the Influence of Curvature of the Trajectories of Deformation of a Volume of the Material by Pressing on Its Plasticity Under the Conditions of Complex Loading. Materials Science, 54 (3), 326–332. doi: https://doi.org/10.1007/s11003-018-0188-x
- Ogorodnikov, V. A., Dereven'ko, I. A. (2013). Modeling combined extrusion process to assess the limit of forming blanks from different materials. Izvestiya MGTU «MAMI», 2 (2 (16)), 224–229.
- Motallebi Savarabadi, M., Faraji, G., Zalnezhad, E. (2019). Hydrostatic tube cyclic expansion extrusion (HTCEE) as a new severe plastic deformation method for producing long nanostructured tubes. Journal of Alloys and Compounds, 785, 163–168. doi: https://doi.org/10.1016/j.jallcom.2019.01.149
- Noh, J., Hwang, B. B., Lee, H. Y. (2015). Influence of punch face angle and reduction on flow mode in backward and combined radial backward extrusion process. Metals and Materials International, 21 (6), 1091–1100. doi: https://doi.org/10.1007/s12540-015-5276-y
- Aliieva, L. I. (2016). Forming of defect parts in cold extrusion processes. Visnyk Khersonskoho natsionalnoho tekhnichnoho universytetu, 4, 18–27.
- Aliieva, L. I. (2018). Sovershenstvovanie protsessov kombinirovannogo vydavlivaniya. Kramatorsk: OOO «Tirazh - 51», 352.
- Golovin, V. A. et. al. (2005). Razrabotka i issledovanie protsessov holodnoy obemnoy shtampovki polyh osesimmetrichnyh detaley slozhnoy formy. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem, 11, 10–14.
- Alexandrov, A. A., Evstifeev, V. V., Kovalchuk, A. I., Evstifeev, A. V. (2012). Mathematical modeling of the cross vydavlevaniya conical flange on the tubular workpiece. Vestnik Sibirskoy gosudarstvennoy avtomobil'no-dorozhnoy akademii, 6 (28), 93–99.
- Chudakov, P. D. (1992). Verhnyaya otsenka moschnosti plasticheskoy deformatsii s ispol'zovaniem minimiziruyuschey funktsii. Izvestiya vuzov. Mashinostroenie, 9, 13–15.
- Chudakov, P. D. (1979). O vychislenii moschnosti plasticheskoy deformatsii. Izvestiya vuzov. Mashinostroenie, 7, 146–148.
- Aliieva, L. I., Shkira, A. V., Goncharuk, K. V. (2015). Primenenie matematicheskogo apparata dlya opredeleniya energosilovyh harakteristik kombinirovannogo trehstoronnego vydavlivaniya. Nauchnyy vestnik Donbasskoy gosudarstvennoy mashinostroitel'noy akademii, 2 (17Е), 5–10.
- Hrudkina, N., Markov, O. (2020). Mathematical simulation of cold extrusion processes with complex tool configuration. Technical sciences and technologies, 3 (21), 89–97. doi: https://doi.org/10.25140/2411-5363-2020-3(21)-89-97
- Hrudkina, N., Aliieva, L. (2020). Modeling of cold extrusion processes using kinematic trapezoidal modules. FME Transactions, 48 (2), 357–363. doi: https://doi.org/10.5937/fme2002357h
- Hrudkina, N. (2021). Process modeling of sequential radial-direct extrusion using curved triangular kinematic module. FME Transactions, 49 (1), 56–63. doi: https://doi.org/10.5937/fme2101056h
- Hrudkina, N., Aliieva, L., Markov, O., Marchenko, I., Shapoval, A., Abhari, P., Kordenko, M. (2020). Predicting the shape formation of hollow parts with a flange in the process of combined radial-reverse extrusion. Eastern-European Journal of Enterprise Technologies, 4 (1 (106)), 55–62. doi: https://doi.org/10.15587/1729-4061.2020.203988
- Winiarski, G., Gontarz, A., Samołyk, G. (2020). Theoretical and Experimental Analysis of a New Process for Forming Flanges on Hollow Parts. Materials, 13 (18), 4088. doi: https://doi.org/10.3390/ma13184088
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Наталья Сергеевна Грудкина, Играмотдин Серажутдинович Алиев, Олег Евгеньевич Марков, Юрий Владимирович Савченко, Людмила Павловна Суховирская, Любовь Викторовна Таган
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.