Designing a kinematic module with rounding to model the processes of combined radial-longitudinal extrusion involving a tool whose configuration is complex

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.227120

Keywords:

simulation of combined extrusion processes, tool configuration, kinematic module, energy method

Abstract

It is advisable that parts whose shape is complex and which are made from solid or hollow blanks should be made by means of transverse and combined radial-longitudinal extrusion. The variation of manufacturing modes, tool configurations (in the form of chambers and rounding of the transitional sections of matrices) requires an adequate preliminary assessment of the force regime and the features of part shape formation. This paper has proposed a curvilinear kinematic module of the trapezoidal form for modeling radial-longitudinal extrusion processes in the presence of matrix rounding. Given the impossibility of using a quarter-circle boundary for the kinematically assigned possible velocity field, it has been proposed to use approximate curves in the form of z1(r) and z2(r). Taking into account the slightest deviation in the length of the arc of the approximate curve z1(r) and the area of the curvilinear trapezoid bounded by it relative to a quarter of the circle (not exceeding 0.8 % for any ratio), it has been recommended using this particular replacement. We have performed calculations of the value of the reduced deformation pressure inside the kinematic module with rounding taking into consideration the power of cutting forces at the border with adjacent kinematic modules. As an example, the devised module with rounding embedded in the estimation scheme of radial extrusion was analyzed. A significant impact of friction conditions on the force mode and the corresponding optimal value of the rounding radius have been identified. The resulting kinematic module makes it possible to expand the capabilities of the energy method for modeling cold extrusion processes involving the tools of complex form according to new deformation schemes. That could contribute to preparing recommendations on the optimal tool configuration and more active industrial implementation of these processes

Author Biographies

Natalia Hrudkina, Donbass State Engineering Academy

PhD

Department of Metal Forming

Igramotdin Aliiev, Donbass State Engineering Academy

Doctor of Technical Sciences, Professor, Head of Department

Department of Metal Forming

Oleg Markov, Donbass State Engineering Academy

Doctor of Technical Sciences, Professor, Head of Department

Department of Computerized Design and Modeling of Processes and Machines

Iurii Savchenko, University of Customs and Finance

PhD

Department of Cybersecurity and Information Technology

Liudmyla Sukhovirska, Donetsk National Medical University

PhD

Department of Medical Physics and Information Technologies No. 2

Liubov Tahan, Donbass State Engineering Academy

PhD

Department of Metal Forming

References

  1. Bhaduri, A. (2018). Extrusion. Springer Series in Materials Science, 599–646. doi: https://doi.org/10.1007/978-981-10-7209-3_13
  2. Kukhar, V., Kurpe, O., Klimov, E., Balalayeva, E., Dragobetskii, V. (2018). Improvement of the Method for Calculating the Metal Temperature Loss on a Coilbox Unit at The Rolling on Hot Strip Mills. International Journal of Engineering & Technology, 7 (4.3), 35. doi: https://doi.org/10.14419/ijet.v7i4.3.19548
  3. Markov, O., Kukhar, V., Zlygoriev, V., Shapoval, A., Khvashchynskyi, A., Zhytnikov, R. (2020). Improvement of upsetting process of four-beam workpieces based on computerized and physical modeling. FME Transactions, 48 (4), 946–953. doi: https://doi.org/10.5937/fme2004946m
  4. Bohdanova, L. M., Vasilyeva, L. V., Guzenko, D. E., Kolodyazhny, V. M. (2018). A Software System to Solve the Multi-Criteria Optimization Problem with Stochastic Constraints. Cybernetics and Systems Analysis, 54 (6), 1013–1018. doi: https://doi.org/10.1007/s10559-018-0104-2
  5. Kukhar, V. V., Grushko, A. V., Vishtak, I. V. (2018). Shape Indexes for Dieless Forming of the Elongated Forgings with Sharpened End by Tensile Drawing with Rupture. Solid State Phenomena, 284, 408–415. doi: https://doi.org/10.4028/www.scientific.net/ssp.284.408
  6. Chigarev, V. V., Belik, A. G., Gribkov, E. P., Gavrish, P. A. (2014). A mathematical model of the process of rolling flux-cored tapes. Welding International, 29 (1), 70–74. doi: https://doi.org/10.1080/09507116.2014.888192
  7. Perig, A. (2015). Two-parameter Rigid Block Approach to Upper Bound Analysis of Equal Channel Angular Extrusion Through a Segal 2θ-die. Materials Research, 18 (3), 628–638. doi: https://doi.org/10.1590/1516-1439.004215
  8. Perig, A., Matveyev, I. (2019). FEM-based deformation regression analysis of ECAE strains. FME Transactions, 47 (4), 851–855. doi: https://doi.org/10.5937/fmet1904851p
  9. Saffar, S., Malaki, M., Mollaei-Dariani, B. (2014). On the effects of eccentricity in precision forging process. UPB Scientific Bulletin, Series D: Mechanical Engineering, 76 (1), 123–138. Available at: https://www.researchgate.net/publication/288478481_On_the_effects_of_eccentricity_in_precision_forging_process
  10. Aliieva, L., Hrudkina, N., Aliiev, I., Zhbankov, I., Markov, O. (2020). Effect of the tool geometry on the force mode of the combined radial-direct extrusion with compression. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 15–22. doi: https://doi.org/10.15587/1729-4061.2020.198433
  11. Perig, A. V. (2014). 2D upper bound analysis of ECAE through 2θ-dies for a range of channel angles. Materials Research, 17 (5), 1226–1237. doi: https://doi.org/10.1590/1516-1439.268114
  12. Kalyuzhnyi, V. L., Alieva, L. I., Kartamyshev, D. A., Savchinskii, I. G. (2017). Simulation of Cold Extrusion of Hollow Parts. Metallurgist, 61 (5-6), 359–365. doi: https://doi.org/10.1007/s11015-017-0501-1
  13. Lee, Y. S., Hwang, S. K., Chang, Y. S., Hwang, B. B. (2001). The forming characteristics of radial–forward extrusion. Journal of Materials Processing Technology, 113 (1-3), 136–140. doi: https://doi.org/10.1016/s0924-0136(01)00705-1
  14. Jafarzadeh, H., Zadshakoyan, M., Abdi Sobbouhi, E. (2010). Numerical Studies of Some Important Design Factors in Radial-Forward Extrusion Process. Materials and Manufacturing Processes, 25 (8), 857–863. doi: https://doi.org/10.1080/10426910903536741
  15. Alieva, L., Zhbankov, Y. (2015). Radial-direct extrusion with a movable mandrel. Metallurgical and Mining Industry, 11, 175–183. Available at: https://www.metaljournal.com.ua/assets/Journal/english-edition/MMI_2015_11/Leila_Alieva.pdf
  16. Aliev, I. S. (1988). Radial extrusion processes. Soviet Forging and Metal Stamping Technology. English Translation of Kuznechno-Shtampovochnoe Proizvodstvo, 3, 54–61.
  17. Aliev, I. S., Lobanov, A. I., Borisov, R. S., Savchinskij, I. G. (2004). Investigation of die blocks with split matrixes for the processes of cross extrusion. In: Forging and Stamping Production (Materials Working by Pressure), 8, 21–26.
  18. Farhoumand, A., Ebrahimi, R. (2009). Analysis of forward–backward-radial extrusion process. Materials & Design, 30 (6), 2152–2157. doi: https://doi.org/10.1016/j.matdes.2008.08.025
  19. Jafarzadeh, H., Barzegar, S., Babaei, A. (2014). Analysis of Deformation Behavior in Backward–Radial–Forward Extrusion Process. Transactions of the Indian Institute of Metals, 68 (2), 191–199. doi: https://doi.org/10.1007/s12666-014-0441-4
  20. Farhoumand, A., Ebrahimi, R. (2016). Experimental investigation and numerical simulation of plastic flow behavior during forward-backward-radial extrusion process. Progress in Natural Science: Materials International, 26 (6), 650–656. doi: https://doi.org/10.1016/j.pnsc.2016.12.005
  21. Ogorodnikov, V. А., Dereven’ko, I. А., Sivak, R. I. (2018). On the Influence of Curvature of the Trajectories of Deformation of a Volume of the Material by Pressing on Its Plasticity Under the Conditions of Complex Loading. Materials Science, 54 (3), 326–332. doi: https://doi.org/10.1007/s11003-018-0188-x
  22. Ogorodnikov, V. A., Dereven'ko, I. A. (2013). Modeling combined extrusion process to assess the limit of forming blanks from different materials. Izvestiya MGTU «MAMI», 2 (2 (16)), 224–229.
  23. Motallebi Savarabadi, M., Faraji, G., Zalnezhad, E. (2019). Hydrostatic tube cyclic expansion extrusion (HTCEE) as a new severe plastic deformation method for producing long nanostructured tubes. Journal of Alloys and Compounds, 785, 163–168. doi: https://doi.org/10.1016/j.jallcom.2019.01.149
  24. Noh, J., Hwang, B. B., Lee, H. Y. (2015). Influence of punch face angle and reduction on flow mode in backward and combined radial backward extrusion process. Metals and Materials International, 21 (6), 1091–1100. doi: https://doi.org/10.1007/s12540-015-5276-y
  25. Aliieva, L. I. (2016). Forming of defect parts in cold extrusion processes. Visnyk Khersonskoho natsionalnoho tekhnichnoho universytetu, 4, 18–27.
  26. Aliieva, L. I. (2018). Sovershenstvovanie protsessov kombinirovannogo vydavlivaniya. Kramatorsk: OOO «Tirazh - 51», 352.
  27. Golovin, V. A. et. al. (2005). Razrabotka i issledovanie protsessov holodnoy obemnoy shtampovki polyh osesimmetrichnyh detaley slozhnoy formy. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem, 11, 10–14.
  28. Alexandrov, A. A., Evstifeev, V. V., Kovalchuk, A. I., Evstifeev, A. V. (2012). Mathematical modeling of the cross vydavlevaniya conical flange on the tubular workpiece. Vestnik Sibirskoy gosudarstvennoy avtomobil'no-dorozhnoy akademii, 6 (28), 93–99.
  29. Chudakov, P. D. (1992). Verhnyaya otsenka moschnosti plasticheskoy deformatsii s ispol'zovaniem minimiziruyuschey funktsii. Izvestiya vuzov. Mashinostroenie, 9, 13–15.
  30. Chudakov, P. D. (1979). O vychislenii moschnosti plasticheskoy deformatsii. Izvestiya vuzov. Mashinostroenie, 7, 146–148.
  31. Aliieva, L. I., Shkira, A. V., Goncharuk, K. V. (2015). Primenenie matematicheskogo apparata dlya opredeleniya energosilovyh harakteristik kombinirovannogo trehstoronnego vydavlivaniya. Nauchnyy vestnik Donbasskoy gosudarstvennoy mashinostroitel'noy akademii, 2 (17Е), 5–10.
  32. Hrudkina, N., Markov, O. (2020). Mathematical simulation of cold extrusion processes with complex tool configuration. Technical sciences and technologies, 3 (21), 89–97. doi: https://doi.org/10.25140/2411-5363-2020-3(21)-89-97
  33. Hrudkina, N., Aliieva, L. (2020). Modeling of cold extrusion processes using kinematic trapezoidal modules. FME Transactions, 48 (2), 357–363. doi: https://doi.org/10.5937/fme2002357h
  34. Hrudkina, N. (2021). Process modeling of sequential radial-direct extrusion using curved triangular kinematic module. FME Transactions, 49 (1), 56–63. doi: https://doi.org/10.5937/fme2101056h
  35. Hrudkina, N., Aliieva, L., Markov, O., Marchenko, I., Shapoval, A., Abhari, P., Kordenko, M. (2020). Predicting the shape formation of hollow parts with a flange in the process of combined radial-reverse extrusion. Eastern-European Journal of Enterprise Technologies, 4 (1 (106)), 55–62. doi: https://doi.org/10.15587/1729-4061.2020.203988
  36. Winiarski, G., Gontarz, A., Samołyk, G. (2020). Theoretical and Experimental Analysis of a New Process for Forming Flanges on Hollow Parts. Materials, 13 (18), 4088. doi: https://doi.org/10.3390/ma13184088

Downloads

Published

2021-04-20

How to Cite

Hrudkina, N., Aliiev, I., Markov, O., Savchenko, I., Sukhovirska, L., & Tahan, L. (2021). Designing a kinematic module with rounding to model the processes of combined radial-longitudinal extrusion involving a tool whose configuration is complex . Eastern-European Journal of Enterprise Technologies, 2(1 (110), 81–89. https://doi.org/10.15587/1729-4061.2021.227120

Issue

Section

Engineering technological systems