Broken rotor bars fault detection in induction motors based on current envelope and neural network

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.227315

Keywords:

classification of broken rotor bars, stator current envelope, neural network, fault detection and diagnosis, induction motors

Abstract

The growing demand for dependable manufacturing techniques has sped up research into condition monitoring and fault diagnosis of critical motor parts. On the other hand, in modern industry, machine maintenance is becoming increasingly necessary. An insufficient maintenance strategy can result in unnecessarily high downtime or accidental machine failure, resulting in significant financial and even human life losses. Downtime and repair costs rise as a result of failure. Furthermore, developing an online condition monitoring method may be one solution to come up for the problem. Early detection of faults is very vital since they grow quickly and can cause further problems to the motor. This paper proposes an effective strategy for the classification of broken rotor bars (BRBs) for induction motors (IMs) that uses a new approach based on Artificial Neural Network (ANN) and stator current envelope. The stator current envelope is extracted using the cubic spline interpolation process. This is based on the idea that the amplitude-modulated motor current signal can be revealed using the motor current envelope. The stator current envelope is used to select seven features, which will be used as input for the neural network. Five IM conditions were experimentally used in this study, including a part of BRB, 1 BRB, 2 BRBs and 3 BRBs. The new feature extraction and selection approach achieves a higher level of accuracy than the conventional method for motor fault classification, according to the experimental results. Indeed, the results are impressive, and it is capable of detecting the exact number of broken rotor bars under full load conditions

Author Biography

Mohammed Obaid Mustafa, University of Mosul

PhD

Department of Electrical Engineering

College of Engineering

References

  1. Toliyat, H. A., Nandi, S., Choi, S., Meshgin-Kelk, H. (2013). Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis. CRC Press, 272. doi: https://doi.org/10.1201/b13008
  2. Benbouzid, M. E. H. (1999). Bibliography on induction motors faults detection and diagnosis. IEEE Transactions on Energy Conversion, 14 (4), 1065–1074. doi: https://doi.org/10.1109/60.815029
  3. Antonino-Daviu, J., Aviyente, S., Strangas, E. G., Riera-Guasp, M. (2013). Scale Invariant Feature Extraction Algorithm for the Automatic Diagnosis of Rotor Asymmetries in Induction Motors. IEEE Transactions on Industrial Informatics, 9 (1), 100–108. doi: https://doi.org/10.1109/tii.2012.2198659
  4. Hwang, I., Kim, S., Kim, Y., Seah, C. E. (2010). A Survey of Fault Detection, Isolation, and Reconfiguration Methods. IEEE Transactions on Control Systems Technology, 18 (3), 636–653. doi: https://doi.org/10.1109/tcst.2009.2026285
  5. Bellini, A., Filippetti, F., Tassoni, C., Capolino, G.-A. (2008). Advances in Diagnostic Techniques for Induction Machines. IEEE Transactions on Industrial Electronics, 55 (12), 4109–4126. doi: https://doi.org/10.1109/tie.2008.2007527
  6. Riera-Guasp, M., Antonino-Daviu, J. A., Capolino, G.-A. (2015). Advances in Electrical Machine, Power Electronic, and Drive Condition Monitoring and Fault Detection: State of the Art. IEEE Transactions on Industrial Electronics, 62 (3), 1746–1759. doi: https://doi.org/10.1109/tie.2014.2375853
  7. Henao, H., Capolino, G.-A., Fernandez-Cabanas, M., Filippetti, F., Bruzzese, C., Strangas, E. et. al. (2014). Trends in Fault Diagnosis for Electrical Machines: A Review of Diagnostic Techniques. IEEE Industrial Electronics Magazine, 8 (2), 31–42. doi: https://doi.org/10.1109/mie.2013.2287651
  8. Thomson, W. T., Fenger, M. (2001). Current signature analysis to detect induction motor faults. IEEE Industry Applications Magazine, 7 (4), 26–34. doi: https://doi.org/10.1109/2943.930988
  9. Said, M. S. N., Benbouzid, M. E. H., Benchaib, A. (2000). Detection of broken bars in induction motors using an extended Kalman filter for rotor resistance sensorless estimation. IEEE Transactions on Energy Conversion, 15 (1), 66–70. doi: https://doi.org/10.1109/60.849118
  10. Rayyam, M., Zazi, M., Hajji, Y., Chtouki, I. (2016). Stator and rotor faults detection in Induction Motor (IM) using the Extended Kaman Filter (EKF). 2016 International Conference on Electrical and Information Technologies (ICEIT). doi: https://doi.org/10.1109/eitech.2016.7519579
  11. Diallo, D., Benbouzid, M. E. H., Hamad, D., Pierre, X. (2005). Fault Detection and Diagnosis in an Induction Machine Drive: A Pattern Recognition Approach Based on Concordia Stator Mean Current Vector. IEEE Transactions on Energy Conversion, 20 (3), 512–519. doi: https://doi.org/10.1109/tec.2005.847961
  12. Widodo, A., Yang, B.-S., Han, T. (2007). Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors. Expert Systems with Applications, 32 (2), 299–312. doi: https://doi.org/10.1016/j.eswa.2005.11.031
  13. Mustafa, M. O., Varagnolo, D., Nikolakopoulos, G., Gustafsson, T. (2016). Detecting broken rotor bars in induction motors with model-based support vector classifiers. Control Engineering Practice, 52, 15–23. doi: https://doi.org/10.1016/j.conengprac.2016.03.019
  14. Matić, D., Kulić, F., Pineda-Sánchez, M., Kamenko, I. (2012). Support vector machine classifier for diagnosis in electrical machines: Application to broken bar. Expert Systems with Applications, 39 (10), 8681–8689. doi: https://doi.org/10.1016/j.eswa.2012.01.214
  15. Mustafa, M. O., Nikolakopoulos, G., Gustafsson, T. (2013). Broken bars fault diagnosis based on uncertainty bounds violation for three-phase induction motors. International Transactions on Electrical Energy Systems, 25 (2), 304–325. doi: https://doi.org/10.1002/etep.1843
  16. Kim, Y.-H., Youn, Y.-W., Hwang, D.-H., Sun, J.-H., Kang, D.-S. (2013). High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors. IEEE Transactions on Industrial Electronics, 60 (9), 4103–4117. doi: https://doi.org/10.1109/tie.2012.2227912
  17. Lopez-Ramirez, M., Ledesma-Carrillo, L. M., Garcia-Guevara, F. M., Munoz-Minjares, J., Cabal-Yepez, E., Villalobos-Pina, F. J. (2020). Automatic Early Broken-Rotor-Bar Detection and Classification Using Otsu Segmentation. IEEE Access, 8, 112624–112632. doi: https://doi.org/10.1109/access.2020.3002545
  18. Gangsar, P., Tiwari, R. (2020). Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review. Mechanical Systems and Signal Processing, 144, 106908. doi: https://doi.org/10.1016/j.ymssp.2020.106908
  19. Zolfaghari, S., Noor, S., Rezazadeh Mehrjou, M., Marhaban, M., Mariun, N. (2017). Broken Rotor Bar Fault Detection and Classification Using Wavelet Packet Signature Analysis Based on Fourier Transform and Multi-Layer Perceptron Neural Network. Applied Sciences, 8 (1), 25. doi: https://doi.org/10.3390/app8010025
  20. Georgoulas, G., Mustafa, M. O., Tsoumas, I. P., Antonino-Daviu, J. A., Climente-Alarcon, V., Stylios, C. D., Nikolakopoulos, G. (2013). Principal Component Analysis of the start-up transient and Hidden Markov Modeling for broken rotor bar fault diagnosis in asynchronous machines. Expert Systems with Applications, 40 (17), 7024–7033. doi: https://doi.org/10.1016/j.eswa.2013.06.006
  21. Cameron, J. R., Thomson, W. T., Dow, A. B. (1986). Vibration and current monitoring for detecting airgap eccentricity in large induction motors. IEE Proceedings B Electric Power Applications, 133 (3), 155–163. doi: https://doi.org/10.1049/ip-b.1986.0022
  22. Piedad, E. J., Chen, Y.-T., Chang, H.-C., Kuo, C.-C. (2020). Frequency Occurrence Plot-Based Convolutional Neural Network for Motor Fault Diagnosis. Electronics, 9 (10), 1711. doi: https://doi.org/10.3390/electronics9101711
  23. Combastel, C., Lesecq, S., Petropol, S., Gentil, S. (2002). Model-based and wavelet approaches to induction motor on-line fault detection. Control Engineering Practice, 10 (5), 493–509. doi: https://doi.org/10.1016/s0967-0661(01)00158-7
  24. Press, W., Teukolsky, S., Vetterling, W., Flannery, B. (1992). Numerical recipes in C: the art of scientific computing. Cambridge University Press, 994. Available at: https://dl.acm.org/doi/book/10.5555/148286
  25. Gang Niu, Son, J.-D., Widodo, A., Yang, B.-S., Hwang, D.-H., Kang, D.-S. (2007). A Comparison of Classifier Performance for Fault Diagnosis of Induction Motor using Multi-type Signals. Structural Health Monitoring, 6 (3), 215–229. doi: https://doi.org/10.1177/1475921707081110
  26. Arabaci, H., Bilgin, O. (2012). Diagnosis of broken rotor bar faults by using frequency spectrum of stator current envelope. 2012 XXth International Conference on Electrical Machines. doi: https://doi.org/10.1109/icelmach.2012.6350100

Downloads

Published

2021-06-30

How to Cite

Mustafa, M. O. (2021). Broken rotor bars fault detection in induction motors based on current envelope and neural network . Eastern-European Journal of Enterprise Technologies, 3(2 (111), 88–95. https://doi.org/10.15587/1729-4061.2021.227315