Development of a hardware and software model of a rocket motion correction system

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.228146

Keywords:

flight path correction, reference model of rocket motion, rocket, half-scale simulation

Abstract

The paper deals with the development of a motion correction system for an unguided rocket of a certain class. The existing method for calculating the rocket flight range based on the dependence of flight path on the initial rocket pitch angle and average parameters of disturbing effects does not provide the required accuracy of the specified flight range. This is mainly due to uncontrolled range wind deviations in the flight area. At the same time, conducting test rocket launches to identify dispersion characteristics and improve the target accuracy leads to significant material costs. Therefore, computer simulation is the most promising approach for studying rocket dispersion laws and developing a motion correction system for the unguided rocket on this basis. When developing the correction system, classical differential equations were used describing the aerodynamics of a variable-mass rocket, as well as adaptive control methods with a reference model. As a result of the study, a method for recording a program that implements the reference model on the Arduino Due platform was developed. A general Simulink model that simulates the process of rocket flight path correction was built. A half-scale rocket flight model with a correction block was developed. Based on this model, a series of experiments were carried out, which showed a high degree of rocket target accuracy due to rocket path correction. The results make it possible to take the developed system as a basis for developing a practical path correction system for Grad rockets

Author Biographies

Talgat Atygayev, M. Kozybayev North Kazakhstan University

Рostgraduate Student

Department of Energetic and Radioelectronics

Victor Ivel, M. Kozybayev North Kazakhstan University

Doctor of Technical Sciences, Professor

Department of Energetic and Radioelectronics

Yulia Gerasimova, M. Kozybayev North Kazakhstan University

PhD, Associate Professor

Department of Energetic and Radioelectronics

References

  1. Akhromeev, S. F. (Ed.) (1986). Reaktivnaya sistema zalpovogo ognya. Voenniy entsiklopedicheskiy slovar. Moscow: Voenizdat, 625–626.
  2. Lahti, J., Sailaranta, T., Harju, M., Virtanen, K. (2019). Control of exterior ballistic properties of spin-stabilized bullet by optimizing internal mass distribution. Defence Technology, 15 (1), 38–50. doi: http://doi.org/10.1016/j.dt.2018.10.003
  3. Sun, H., Yu, J., Zhang, S. (2016). The Control of Asymmetric Rolling Missiles Based on Improved Trajectory Linearization Control Method. Journal of Aerospace Technology and Management, 8 (3), 319–327. doi: http://doi.org/10.5028/jatm.v8i3.617
  4. Lei, X., Zhang, Z., Du, Z. (2019). Analysis of an improved trajectory correction scheme based on mass blocks. Journal of Systems Engineering and Electronics, 30 (1), 180–190. doi: http://doi.org/10.21629/jsee.2019.01.17
  5. De Celis, R., Cadarso, L., Sánchez, J. (2017). Guidance and control for high dynamic rotating artillery rockets. Aerospace Science and Technology, 64, 204–212. doi: http://doi.org/10.1016/j.ast.2017.01.026
  6. Yuan, G., Liangxian, G., Lei, P. (2009). Modeling and Simulating Dynamics of Missiles with Deflectable Nose Control. Chinese Journal of Aeronautics, 22 (5), 474–479. doi: http://doi.org/10.1016/s1000-9361(08)60128-4
  7. vtukh, D. N., Maksimov, S. S. (2012) Analiz vozmozhnykh skhem postroeniya sistem upravleniya RS povyshennoy tochnosti dlya RSZO kalibra 122-mm. Izvestiya TulGU. Tekhnicheskie nauki, 11 (1), 167–170.
  8. Kuznetsov, N. S. (2014) Nekotorye perspektivnye napravleniya rabot v OAO «NLP «Delta». Boepripasy, 2, 9–11.
  9. Kuznetsov, N. S. (2019). Pat. No. 0002678922 RU. Sposob korrektsiyi traektorii snaryadov reaktivnykh sistem zalpovogo ognya. published: 04.02.2019. Available at: https://edrid.ru/rid/219.016.b7e0.html
  10. Xu, Y., Zhijun Wang, Z., Dong, F. (2020). Ballistic Trajectory Modeling for Missile with Deflectable Nose. Mechanics, 26 (5), 450–456. doi: http://doi.org/10.5755/j01.mech.26.5.27874
  11. Zhang, C., Li, D. (2020). Mechanical and Electronic Video Stabilization Strategy of Mortars with Trajectory Correction Fuze Based on Infrared Image Sensor. Sensors, 20 (9), 2461. doi: http://doi.org/10.3390/s20092461
  12. Sun, X., Gao, M., Zhou, X., Lv, J., Tian, F., Qiao, Z. (2021). Guidance Simulation and Experimental Verification of Trajectory Correction Mortar Projectile. IEEE Access, 9, 15609–15622. doi: http://doi.org/10.1109/access.2021.3052883
  13. Walha, A., Wali, A., Alimi, A. M. (2013). Video Stabilization for Aerial Video Surveillance. AASRI Procedia, 4, 72–77. doi: http://doi.org/10.1016/j.aasri.2013.10.012
  14. Li, S., Lu, J., Cheng, L., Zeng, D. (2021). A high precision in-bore velocity measurement system of railgun based on improved Bi-LSTM network. Measurement, 169, 108501. doi: http://doi.org/10.1016/j.measurement.2020.108501
  15. Li, W., Wen, Q., Yang, Y. (2019). Stability analysis of spinning missiles induced by seeker disturbance rejection rate parasitical loop. Aerospace Science and Technology, 90, 194–208. doi: http://doi.org/10.1016/j.ast.2019.04.013
  16. Sun, X., Gao, M., Zhou, X., Lv, J., Tian, F., Qiao, Z. (2021). Guidance Simulation and Experimental Verification of Trajectory Correction Mortar Projectile. IEEE Access, 9, 15609–15622. doi: http://doi.org/10.1109/access.2021.3052883
  17. Dmitrievskiy, A. A., Lysenko, L. N. (2005). Vneshnyaya ballistika. Moscow: «Mashinostroenie», 607.
  18. Dyakonov, V. (2002). MATLAB. Obrabotka signalov i izobrazheniy. Spetsialniy spravochnik. Saint Petersburg: «Piter», 608.
  19. Guskov, A. V., Milevskiy K. E., Sotenko A. V. (2010) Vneshnyaya ballistika. Novosibirsk: Izd-vo. NGTU, 188.

Downloads

Published

2021-06-30

How to Cite

Atygayev, T., Ivel, V., & Gerasimova, Y. . (2021). Development of a hardware and software model of a rocket motion correction system . Eastern-European Journal of Enterprise Technologies, 3(3 (111), 15–23. https://doi.org/10.15587/1729-4061.2021.228146

Issue

Section

Control processes