Determining the effect of dispersed aluminum particles on the functional properties of polymeric composites based on polyvinylidene fluoride

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.228731

Keywords:

polymeric composite materials, dispersed aluminum particles, thermal conductivity, tensile strength, sound speed

Abstract

Polymeric materials that contain inorganic fillers demonstrate a unique set of physical properties due to the combination of matrix elasticity and filler strength. This paper reports determining the effect of dispersed aluminum particles on the properties of polyvinylidene fluoride-based materials. This study result is the fabrication of a series of composite materials using a piston extruder. Their functional characteristics have been explored using the methods of thermophysical and mechanical analysis, dilatometry, and acoustic spectroscopy. It was established that the introduction of dispersed aluminum particles leads to the loosening of the matrix, which may indicate the transition of macro macromolecules from the crystalline phase to the boundary layer around the filler. This feature of structure formation and the uniform distribution of filler particles ensured the improvement of the functional characteristics of the materials obtained. It has been shown that with an increase in the content of filler in the system to 5 % the thermal conductivity increases from 0.17 W/(m·K) to 1.55 W/(m·K). The introduction of the filler leads to an improvement in the heat resistance of the materials obtained, by 17 K. The increase in both melting point and destructiveness is explained by the formation of a more perfect polymer structure with a higher degree of crystallinity. An increase in the speed of ultrasound propagation was identified, by 67 %, as well as in the tensile strength, by 36 %, in the materials obtained, which can be explained by contributions from the filler, which has greater sound conductivity and mechanical strength than the polymer matrix. Such systems show the reinforcing effect of aluminum particles on the polymer matrix, so they could be used as structural materials with improved functional characteristics

Author Biographies

Eduard Lysenkov, Petro Mohyla Black Sea National University

Doctor of Physical and Mathematical Sciences, Associate Professor

Department of Intelligent Information Systems

Leonid Klymenko, Petro Mohyla Black Sea National University

Doctor of Technical Sciences, Professor, Rector

Department of Ecology

References

  1. Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., Elharfi, A. (2021). Polymer composite materials: A comprehensive review. Composite Structures, 262, 113640. doi: https://doi.org/10.1016/j.compstruct.2021.113640
  2. Antipov, Y. V., Kul’kov, A. A., Pimenov, N. V. (2016). Polymer composite materials: Technologies and applications. Polymer Science Series C, 58 (1), 26–37. doi: https://doi.org/10.1134/s181123821601001x
  3. Dorigato, A., Dzenis, Y., Pegoretti, A. (2011). Nanofiller Aggregation as Reinforcing Mechanism in Nanocomposites. Procedia Engineering, 10, 894–899. doi: https://doi.org/10.1016/j.proeng.2011.04.147
  4. Camargo, P. H. C., Satyanarayana, K. G., Wypych, F. (2009). Nanocomposites: synthesis, structure, properties and new application opportunities. Materials Research, 12 (1), 1–39. doi: https://doi.org/10.1590/s1516-14392009000100002
  5. Qu, M., Nilsson, F., Schubert, D. (2018). Effect of Filler Orientation on the Electrical Conductivity of Carbon Fiber/PMMA Composites. Fibers, 6 (1), 3. doi: https://doi.org/10.3390/fib6010003
  6. Vinod Kumar, T., Chandrasekaran, M., Mohanraj, P., Balasubramanian, R., Muraliraja, R., Shaisundaram, S. V. (2018). Fillers preparation for polymer composite and its properties – a review. International Journal of Engineering & Technology, 7 (3.3), 212. doi: https://doi.org/10.14419/ijet.v7i2.33.13889
  7. Ngo, I. L., Truong, V. A. (2019). An investigation on effective thermal conductivity of hybrid-filler polymer composites under effects of random particle distribution, particle size and thermal contact resistance. International Journal of Heat and Mass Transfer, 144, 118605. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2019.118605
  8. Oliveira, M., Machado, A. V. (2013). Preparation of Polymer-Based Nanocomposites by Different Routes. Nanocomposites: Synthesis, Characterization and Applications. Available at: http://repositorium.sdum.uminho.pt/bitstream/1822/26120/1/Chapter.pdf
  9. Mamunia, Ye. P., Yurzhenko, M. V., Lebediev, Ye. V. et. al. (2013). Elektroaktyvni polimerni materialy. Kyiv: Alfa Reklama, 402.
  10. Liu, C.-X., Choi, J.-W. (2012). Improved Dispersion of Carbon Nanotubes in Polymers at High Concentrations. Nanomaterials, 2 (4), 329–347. doi: https://doi.org/10.3390/nano2040329
  11. Lysenkov, E. A., Gagolkina, Z. O., Lobko, E. V., Yakovlev, Yu. V., Nesin, S. D., Klepko, V. V. (2015). Structure-property relationships in polymer nanocomposites based on cross-linked polyurethanes and carbon nanotubes. Functional Materials, 22 (3), 342–349. doi: https://doi.org/10.15407/fm22.03.342
  12. Mittal, V. (Ed.) (2014). Synthesis Techniques for Polymer Nanocomposites. Wiley‐VCH Verlag GmbH & Co. KGaA. doi: https://doi.org/10.1002/9783527670307
  13. Tan, X., Xu, Y., Cai, N., Jia, G. (2009). Polypropylene/silica nanocomposites prepared by in-situ melt ultrasonication. Polymer Composites, 30 (6), 835–840. doi: https://doi.org/10.1002/pc.20598
  14. Lee, E. C., Mielewski, D. F., Baird, R. J. (2004). Exfoliation and dispersion enhancement in polypropylene nanocomposites by in-situ melt phase ultrasonication. Polymer Engineering and Science, 44 (9), 1773–1782. doi: https://doi.org/10.1002/pen.20179
  15. Mould, S., Barbas, J., Machado, A. V., Nóbrega, J. M., Covas, J. A. (2014). Preparation of Polymer-Clay Nanocomposites by Melt Mixing in a Twin Screw Extruder: Using On-Line SAOS Rheometry to Assess the Level of Dispersion. International Polymer Processing, 29 (1), 63–70. doi: https://doi.org/10.3139/217.2803
  16. Brunengo, E., Castellano, M., Conzatti, L., Canu, G., Buscaglia, V., Stagnaro, P. (2020). PVDF‐based composites containing PZT particles: How processing affects the final properties. Journal of Applied Polymer Science, 137 (20), 48871. doi: https://doi.org/10.1002/app.48871
  17. Wu, D., Deng, L., Sun, Y., Teh, K. S., Shi, C., Tan, Q. et. al. (2017). A high-safety PVDF/Al2O3 composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating. RSC Advances, 7 (39), 24410–24416. doi: https://doi.org/10.1039/c7ra02681a
  18. Zhou, W., Zuo, J., Ren, W. (2012). Thermal conductivity and dielectric properties of Al/PVDF composites. Composites Part A: Applied Science and Manufacturing, 43 (4), 658–664. doi: https://doi.org/10.1016/j.compositesa.2011.11.024
  19. Dinzhos, R. V., Fialko, N. M., Lysenkov, E. A. (2014). Analysis of the Thermal Conductivity of Polymer Nanocomposites Filled with Carbon Nanotubes and Carbon Black. Journal of Nano- and Electronic Physics, 6 (1), 01015. Available at: https://jnep.sumdu.edu.ua/download/numbers/2014/1/articles/jnep_2014_V6_01015.pdf
  20. Klepko, V. V., Kolupaev, B. B., Lysenkov, E. A., Voloshyn, M. O. (2011). Viscoelastic properties of filled polyethylene glycol in the megahertz frequency band. Materials Science, 47 (1), 14–20. doi: https://doi.org/10.1007/s11003-011-9362-0
  21. Garkusha, O. M., Makhno, S. M., Prikhod’ko, G. P., Sementsov, Yu. I., Kartel, M. T. (2010). Structural Features and Properties of Polymeric Nanocomposites with Low Concentrations of Fillers. Himia, Fizika ta Tehnologia Poverhni, 1 (1), 103–110. Available at: http://www.cpts.com.ua/index.php/cpts/article/view/12/9
  22. Lysenkov, É. A., Klepko, V. V. (2015). Characteristic Features of the Thermophysical Properties of a System Based on Polyethylene Oxide and Carbon Nanotubes. Journal of Engineering Physics and Thermophysics, 88 (4), 1008–1014. doi: https://doi.org/10.1007/s10891-015-1278-3
  23. Misiura, A. I., Mamunya, Y. P. (2018). Electrical Conduction and Thermal Conduction of Metal–Polymer Composites. Metallofizika i Noveishie Tekhnologii, 40 (3), 311–326. doi: https://doi.org/10.15407/mfint.40.03.0311
  24. Dinzhos, R. V., Lysenkov, E. A., Fialko, N. M. (2015). Features of thermal conductivity of composites based on thermoplastic polymers and aluminum particles. Journal of Nano- and Electronic Physics, 7 (3), 03022. Available at: https://jnep.sumdu.edu.ua/download/numbers/2015/3/articles/en/jnep_eng_2015_V7_No3_03022_Dinzhos.pdf
  25. Fuchs, S., Schütz, F., Förster, H.-J., Förster, A. (2013). Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: Correction charts and new conversion equations. Geothermics, 47, 40–52. doi: https://doi.org/10.1016/j.geothermics.2013.02.002
  26. Lysenkov, Е. А., Lysenkova, I. P. (2020). Influence of nanodiamonds on the structure and thermophysical properties of polyethylene glycol-based systems. Functional Materials, 27 (4), 774–780. doi: https://doi.org/10.15407/fm27.04.774
  27. Lysenkov, Е. А., Klepko, V. V., Lysenkova, I. P. (2020). Features of Structural Organization of Nanodiamonds in the Polyethylene Glycol Matrix. Journal of Nano- and Electronic Physics, 12 (4), 04006-1–04006-6. doi: https://doi.org/10.21272/jnep.12(4).04006
  28. Structure and characteristics of solid polymers (2009). Polymer Science Series A, 51 (1), 26–48. doi: https://doi.org/10.1134/s0965545x09010040
  29. Hida, S., Hori, T., Shiga, T., Elliott, J., Shiomi, J. (2013). Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene. International Journal of Heat and Mass Transfer, 67, 1024–1029. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.068
  30. Mamunya, Ye. P., Levchenko, V. V., Parashchenko, I. M., Lebedev, E. V. (2016). Thermal and electrical conductivity of the polymer-metal composites with 1D structure of filler formed in a magnetic field. Polymer journal, 38 (1), 3–17. doi: https://doi.org/10.15407/polymerj.38.01.003
  31. Tian, W., Yang, R. (2008). Phonon Transport and Thermal Conductivity Percolation in Random Nanoparticle Composites. CMES, 24 (2), 123–141. doi: https://doi.org/10.3970/cmes.2008.024.123
  32. Deshpande, R., Naik, G., Chopra, S., Deshmukh, K. A., Deshmukh, A. D., Peshwe, D. R. (2018). A study on mechanical properties of PBT nano-composites reinforced with microwave functionalized MWCNTs. IOP Conference Series: Materials Science and Engineering, 346, 012004. doi: https://doi.org/10.1088/1757-899x/346/1/012004
  33. Aeyzarq Muhammad Hadzreel, M. R., Siti Rabiatull Aisha, I. (2013). Effect of Reinforcement Alignment on the Properties of Polymer Matrix Composite. Journal of Mechanical Engineering and Sciences, 4, 548–554. doi: https://doi.org/10.15282/jmes.4.2013.18.0051
  34. Kumari, S., Panigrahi, A., Singh, S. K., Pradhan, S. K. (2017). Enhanced corrosion resistance and mechanical properties of nanostructured graphene-polymer composite coating on copper by electrophoretic deposition. Journal of Coatings Technology and Research, 15 (3), 583–592. doi: https://doi.org/10.1007/s11998-017-0001-z
  35. Wang, Q., Han, X. H., Sommers, A., Park, Y., T’ Joen, C., Jacobi, A. (2012). A review on application of carbonaceous materials and carbon matrix composites for heat exchangers and heat sinks. International Journal of Refrigeration, 35 (1), 7–26. doi: https://doi.org/10.1016/j.ijrefrig.2011.09.001

Downloads

Published

2021-06-30

How to Cite

Lysenkov, E., & Klymenko, L. (2021). Determining the effect of dispersed aluminum particles on the functional properties of polymeric composites based on polyvinylidene fluoride . Eastern-European Journal of Enterprise Technologies, 3(12 (111), 59–66. https://doi.org/10.15587/1729-4061.2021.228731

Issue

Section

Materials Science