Some methods of automatic grouping of objects
DOI:
https://doi.org/10.15587/1729-4061.2014.22930Keywords:
cluster analysis, cluster, fuzzy binary relations, objects splitting, clustering objectsAbstract
Cluster analysis is relevant and widely used in information systems, medicine, psychology, chemistry, biology, public administration, philology, marketing, sociology and other disciplines. However, the wide use causes coherence and unambiguity problems of the mathematical apparatus for cluster analysis. In particular, taking into account that clustering data can have different physical meaning and that the objects similarity criteria are not universal and can be defined for different applied problems in different ways, building alternative (to the already known) similarity coefficients, which meet the emerging needs for grouping objects of new applied problems is relevant. Therefore, the purpose of the paper is to improve the efficiency of solving the cluster analysis problems by developing general methods and algorithms for clustering objects based on the "angular" and ''length" metrics and binary relations. General method for clustering objects based on fuzzy binary relations is developed in the paper. Semimetrics, characterizing the proximity degree of vectors of object features by the "angular" and "length" similarity are determined. Clustering algorithms, based on grouping objects by the introduced angular and length semimetrics are built. Software implementation of this method has shown its effectiveness in solving various applied problems and ease of use.
References
- Estivill-Castro, V. Why so many clustering algorithms — A Position Paper [Text] / V. Estivill-Castro // ACM SIGKDD Explorations Newsletter. – 2002. – Vol. 4 (1). – P. 65–75.
- Huang, Z. Extensions to the k-means algorithm for clustering large data sets with categorical values [Text] / Z. Huang // Data Mining and Knowledge Discovery. – 1998. – Vol. 2. – P. 283–304.
- Mingoti, S. Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms [Text] / S. Mingoti, J. Lima // European Journal of Operational Research. – 2006. – Vol. 174 (3). – P. 1742–1759.
- Székely, G. J. Hierarchical clustering via Joint Between-Within Distances: Extending Ward’s Minimum Variance Method [Text] / G. J. Székely, M. L. Rizzo // Journal of Classification. – 2005. – Vol. 22. – P. 151–183.
- Bailey, K. Numerical Taxonomy and Cluster Analysis [Text] / K. Bailey. – Typologies and Taxonomies, 1994. – 34 p.
- Jain, A. K. Flynn Data clustering: a review [Text] / A. K. Jain, M. N. Murty // ACM Comput. Surv. – 1999. – Vol. 31(3). – P. 264–323.
- Пістунов, І. М. Кластерний аналіз в економіці [Текст] / І. М. Пістунов, О. П. Антонюк та ін. – Дніпропетровськ: Національний гірничий університет, 2008.– 84 с.
- Ким, Дж. Факторный, дискриминантный и кластерний анализ [Текст] / Дж. Ким, Ч. У. Мьюллер, У. Р. Клекка. – М.: Финансы и статистика, 1989. – 215 с.
- Дюран, Б. Кластерный анализ [Текст] / Б. Дюран, П. Оделл. – М.: «Статистика», 1977. – 128 с.
- Кондрук, Н. Е. Застосування багатокритеріальних моделей для задач збалансованого харчування [Текст] / Н. Е. Кондрук, М. М. Маляр // Вісник Черкаського державного технологічного університету. Серія: технічні науки. – 2010. – Вип. 1, № 1. – С. 3–7.
- Кондрук, Н. Э. Некоторые применения кластеризации критериального пространства для задач выбора [Текст] / Н. Э. Кондрук, Н. Н. Маляр // Компьютерная математика. – 2009. – № 2. – С. 142–149.
- А61К8/19, А61К8/30, МПК (2006.01). Патент на корисну модель 64777 Україна. Спосіб автоматизованого складання дієтичного харчування «Дієтолог» [Текст] / Маляр М. М., Кондрук Н. Е., Горленко О. М., Томей А.І . – № u201100007; Заявл. від 04.01.2011; Опубл. 25.11.2011, Бюл.№ 22.
- Estivill-Castro, V. (2002). Why so many clustering algorithms — A Position Paper. ACM SIGKDD Explorations Newsletter, 4 (1), 65–75.
- Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2, 283–304.
- Mingoti, S., Lima, J. (2006). Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms. European Journal of Operational Research, 174 (3), 1742–1759.
- Székely, G. J., Rizzo, M. L. (2005). Hierarchical clustering via Joint Between-Within Distances: Extending Ward’s Minimum Variance Method. Journal of Classification, 22, 151–183.
- Bailey, Ken (1994). Numerical Taxonomy and Cluster Analysis. Typologies and Taxonomies, 34.
- Jain, A. K., Murty, M. N. (1999). Flynn Data clustering: a review. ACM Comput. Surv., 31 (3), 264–323.
- Pistunov, I. M. (2008). Cluster analysis of the economy. National Mining University, 84.
- Durand, B. (1977). Cluster analysis. “Statistics”, 128.
- Kim, J. (1989). Factor, discriminant and cluster analysis. Finance and Statistics, 215.
- Kondruk, N. E. (2010). Application of multicriteria models for the problems of a balanced diet. J of Cherkasy State Technological University. Series: Engineering Sciences, Vol. 1, № 1, 3–7.
- Kondruk, N. E. (2009). Some applications of clustering criterion space for selection tasks. Computer Mathematics, 2, 142–149.
- Malyar, M. M., Kondruk, N. E., Gorlenko, A. M., Tomey A. A. (25.11.2011). Ukraine Automated method dietetic foods “Nutritionist”. Patent for utility model 64777 u201100007, № 22.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Наталія Емерихівна Кондрук
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.